Equol, a daidzein metabolite produced exclusively by intestinal bacteria in some, but not all, humans, exhibits a wide range of beneficial health effects owing to its superior nutraceutical effect compared with isoflavones of soy. The aim of this work was to develop bioprocesses capable of increasing the bioactive properties of soymilk and, most importantly, increase the equol content by a biotechnological process . Biotransformation processes based on soymilk fermentation by probiotic lactic bacteria and application of the enzyme tannase caused an increase in the bioactive isoflavones and antioxidant capacity of soymilk. Furthermore, these processes approximately resulted in a 10-fold increase in the equol content of the soymilk. This is the first study to produce a significant equol concentration in soymilk using enzymatic processing only. The results suggest a new and effective biotechnological process, with major commercial potential, capable of producing a bioactive soy extract that intends to be "functional for everyone."
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049152 | PMC |
http://dx.doi.org/10.1007/s10068-016-0130-7 | DOI Listing |
Vet Med Sci
January 2025
Department of Industrial Management, Faculty of Humanities, University of Tehran, Kish International Campus, Tehran, Iran.
Background: The poultry industry faces challenges with the high cost and environmental impact of Soybean meal. Feather meal, a byproduct with low digestibility due to its keratin content, is a potential alternative. Recent biotechnological advances, including enzymatic and bacterial hydrolysis, have enhanced its digestibility and nutritional value.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.
Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!