Beyond structural and chemical barriers to pathogens, the immune system has two fundamental lines of defense: innate immunity and adaptive immunity. Innate immunity is the first immunological mechanism for fighting against an intruding pathogen. It is a rapid immune response, initiated within minutes or hours after aggression, that has no immunologic memory. Adaptive immunity, on the other hand, is antigen-dependent and antigen-specific; it has the capacity for memory, which enables the host to mount a more rapid and efficient immune response upon subsequent exposure to the antigen. There is a great deal of synergy between the adaptive immune system and its innate counterpart, and defects in either system can provoke illness or disease, such as inappropriate inflammation, autoimmune diseases, immunodeficiency disorders and hypersensitivity reactions. This article provides a practical overview of innate and adaptive immunity, and describes how these host defense mechanisms are involved in both heath and illness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156898PMC
http://dx.doi.org/10.1186/s13223-018-0278-1DOI Listing

Publication Analysis

Top Keywords

adaptive immunity
12
immune system
8
innate immunity
8
immune response
8
immunity
5
introduction immunology
4
immunology immunopathology
4
immunopathology structural
4
structural chemical
4
chemical barriers
4

Similar Publications

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

MERS is a respiratory disease caused by MERS-CoV. Multiple outbreaks have been reported, and the virus co-circulates with SARS-CoV-2. The long-term (> 6 years) cellular and humoral immune responses to MERS-CoV and their potential cross-reactivity to SARS-CoV-2 and its variants are unknown.

View Article and Find Full Text PDF

cGAS-STING: mechanisms and therapeutic opportunities.

Sci China Life Sci

January 2025

The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.

The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms.

View Article and Find Full Text PDF

Emerging role of adaptive immunity in diabetes-induced cognitive impairment: from the periphery to the brain.

Metab Brain Dis

January 2025

National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.

Diabetic cognitive impairment (DCI) is a central nervous system complication induced by peripheral metabolic dysfunction of diabetes mellitus. Cumulative studies have shown that neuro-immune crosstalk is involved in the pathological progression of DCI. However, current studies mostly focus on the interaction between innate immunity cells and neurons, while ignoring the role of adaptive immunity cells in DCI.

View Article and Find Full Text PDF

In silico functional analysis of the human, chimpanzee, and gorilla MHC-A repertoires.

Immunogenetics

January 2025

Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

T cells recognize peptides displayed on the surface of cells on MHC molecules. Genetic variation in MHC genes alters their peptide-binding repertoire and thus influences the potential immune response generated against pathogens. Both gorillas and chimpanzees show reduced diversity at their MHC class I A (MHC-A) locus compared to humans, which has been suggested to be the result of a pathogen-mediated selective sweep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!