In recent years, several new radiotracers and radionuclide therapies have been developed. There is a renaissance in nuclear medicine and molecular imaging today, for example, in terms of the ability to image and treat neuroendocrine and prostate malignancies. In order to be able to bring a new drug product from bench to bedside and assist patients, while also ensuring patient safety, stringent regulations must be met. However, differences in regulatory requirements, often based on jurisdictional politics rather than scientific evidence, can hinder global co-operation, increase expense, and slow progress. In an effort to rise above these differences, nuclear medicine advocacy organizations, regulators, and international agencies have begun to identify commonalities in the regulations to achieve harmonization. Indeed, a more streamlined approach to radiopharmaceutical drug development across jurisdictions could be achieved through establishing harmonized requirements for pre-clinical studies and manufacturing standards. This paper provides an educational overview of the regulatory and submission requirements governing investigational radiopharmaceuticals for first-in-human radiopharmaceuticals across the European and North American continents. It is hoped that through ongoing collaboration, regulatory reform and harmonization can become a reality and speed access to the most up-to-date evidence-based patient care for all.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.118.209460 | DOI Listing |
J Environ Manage
January 2025
Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA. Electronic address:
The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.
View Article and Find Full Text PDFPLoS Genet
January 2025
Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action.
View Article and Find Full Text PDFBioinformatics
January 2025
School of Artificial Intelligence, Jilin University, Jilin, China.
Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.
Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.
Arch Toxicol
January 2025
Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
Hypertension or high blood pressure (BP) is a prevalent and manageable chronic condition which is a significant contributor to the total global disease burden. Environmental chemicals, including mercury (Hg), may contribute to hypertension onset and development. Hg is a global health concern, listed by the World Health Organization (WHO) as a top ten chemical of public health concern.
View Article and Find Full Text PDFElife
January 2025
Allen Discovery Center, Tufts University, Medford, United States.
Many applications in biomedicine and synthetic bioengineering rely on understanding, mapping, predicting, and controlling the complex behavior of chemical and genetic networks. The emerging field of diverse intelligence investigates the problem-solving capacities of unconventional agents. However, few quantitative tools exist for exploring the competencies of non-conventional systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!