Brain-derived neurotrophic factor and epilepsy: a systematic review.

Neuropeptides

Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy.

Published: December 2018

Several in vitro, ex vivo and in vivo studies imply brain-derived neurotrophic factor (BDNF) in the pathophysiology of epilepsy. Aim of our work is to report the most important findings regarding BDNF and its potential role in epilepsy. We targeted those publications addressing both in vitro and in vivo evidences of relationship between BDNF and epilepsy. Basic researches, randomized trials, cohort studies, and reviews were contemplated to give a breadth of clinical data. Medline, CENTRAL, and Science Direct were searched till August 2017 using keywords agreed by the authors. Together with a defined role in developmental and mature brain, BDNF has excitatory effects in neuronal cultures and animal brain slices. Furthermore, both BDNF and its conjugated receptor (i.e. Tropomyosin receptor kinase B or TrkB) are increased in animal models and humans with epilepsy, particularly in the temporal and hippocampal areas. Acute injection of BDNF in brain of mice induces seizures, which are almost or totally abolished blocking its transcription and pathway. Chronic infusion of BDNF is conversely associated with a decreased neuronal excitability, probably via several mechanism including an increase in central levels of neuropeptide Y (NPY), altered conductance of chloride, and downregulation of TrkB. While genetic studies are inconclusive, serum BDNF is more frequently higher in patients with epilepsy and appears to be correlated to severity of disease. Current evidences suggest that inhibiting BDNF-TrkB signaling and reinforcing the NPY system could represent a potential therapeutic strategy for epilepsy, especially for temporal lobe epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2018.09.005DOI Listing

Publication Analysis

Top Keywords

brain-derived neurotrophic
8
neurotrophic factor
8
epilepsy
8
vitro vivo
8
bdnf
8
epilepsy temporal
8
factor epilepsy
4
epilepsy systematic
4
systematic review
4
review vitro
4

Similar Publications

Background: Refractory epilepsy poses significant challenges in clinical management due to its resistance to standard antiepileptic therapies, necessitating the exploration of more effective treatment regimens. Lamotrigine, with its proven efficacy and tolerability, offers potential benefits when combined with traditional medications like valproate, though its comprehensive impact on clinical outcomes and neurological markers requires further study.

Objective: To analyze the improvement effect of combined application of lamotrigine on refractory epilepsy patients and its impact on patients' EEG and neurological function.

View Article and Find Full Text PDF

Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC.

View Article and Find Full Text PDF

Introduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.

View Article and Find Full Text PDF

Introduction: CarboxypeptidaseE (CPE) is an enzyme involved in the neuropepetides/hormones processing. Its deficiency is associated with endocrinopathies comparable to those caused by proprotein convertase1/3(PC1/3) deficiency. In this case report we expand the clinical features of CPE deficiency by examining the index case's clinical/laboratory results, which are also indicative of PC1/3 deficiency.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!