To develop novel nanoformulated insecticides and antimicrobials, herein we produced Ag nanoparticles (AgNPs) using the Bauhinia acuminata leaf extract. This unexpensive aqueous extract acted as a capping and reducing agent for the formation of AgNPs. We characterized B. acuminata-synthesized AgNPs by UV-vis and FTIR spectroscopy, XRD and TEM analyses. UV-vis spectroscopy analysis of B. acuminata-synthesized AgNPs showed a peak at 441.5 nm. FTIR shed light on functional groups from the phytoconstituents involved in nanosynthesis. XRD of B. acuminata-synthesized AgNPs suggested a face-centered cubic structure, with a highly crystalline nature. TEM of B. acuminata-synthesized AgNPs revealed mean size of 25 nm, with round shape. AgNPs tested at 60 μg/mL inhibited the growth of 5 bacteria and 3 fungal pathogens. In the insecticidal assays on important mosquito species, LC of the aqueous extract of B. acuminata leaves on the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus were 204.07, 226.02, and 249.24 μg/mL, respectively. The B. acuminata-synthesized AgNPs exhibited higher larvicidal efficacy, with LC values of 24.59, 27.19, and 30.19 μg/mL, respectively. Therefore, herein we developed a single-step, reliable, inexpensive, and environmentally non-toxic synthesis process to obtain AgNPs with high bioactivity against pathogens and vectors. Given the effective antimicrobial and larvicidal activity, nanoparticles fabricated using plant extracts and extremely low concentrations of trace elements, such as silver, can be exploited for multipurpose activities. Our results pointed out that B. acuminata-synthesized AgNPs have a promising potential in antimicrobial food packaging, as well as a foliar spray to control plant pathogens in the field, and to synergize the efficacy of fungicidal and larvicidal formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2018.06.016 | DOI Listing |
J Trace Elem Med Biol
December 2018
Department of Bioinformatics, Alagappa University, Karaikudi, India.
To develop novel nanoformulated insecticides and antimicrobials, herein we produced Ag nanoparticles (AgNPs) using the Bauhinia acuminata leaf extract. This unexpensive aqueous extract acted as a capping and reducing agent for the formation of AgNPs. We characterized B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!