Fabrication of oxidase-like polyaniline-MnO hybrid nanowires and their sensitive colorimetric detection of sulfite and ascorbic acid.

Talanta

Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:

Published: January 2019

Recently, nanomaterials-based oxidase-like artificial enzymes have attracted much attention due to their unique catalytic efficiency, high environmental stability and low-cost. In this study, we for the first time show the application of polyaniline (PANi)-MnO hybrid nanowires for oxidase mimicking. The PANi-MnO hybrid nanowires are prepared via a redox reaction between PANi nanowires and KMnO. The as-prepared PANi-MnO hybrid nanowires exhibit an enhanced oxidase-like catalytic activity compared with individual PANi nanowires and MnO alone due to the synergistic catalytic effect between the two components. Based on the above findings, we construct PANi-MnO hybrid nanowires-based colorimetric assay for sensitive and selective detection of sulfite and ascorbic acid (AA). The detection limits of sulfite and AA are as low as 79 and 26 nM, respectively, which is much lower than many previous reported enzyme mimics-based colorimetric sensors. This work demonstrates a broad potential prospect of PANi-MnO hybrid nanowires in biotechnology, environmental science and food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2018.08.061DOI Listing

Publication Analysis

Top Keywords

hybrid nanowires
20
pani-mno hybrid
20
detection sulfite
8
sulfite ascorbic
8
ascorbic acid
8
pani nanowires
8
nanowires
7
hybrid
6
pani-mno
5
fabrication oxidase-like
4

Similar Publications

A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).

View Article and Find Full Text PDF

Reducing Disorder in PbTe Nanowires for Majorana Research.

Nano Lett

January 2025

State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

Material challenges are the key issue in Majorana research, where surface disorder constrains device performance. Here, we tackle this challenge by embedding PbTe nanowires within a lattice-constant-matched crystal. The wire edges are shaped by self-organized growth instead of lithography, resulting in nearly atomically flat facets along both cross-sectional and longitudinal directions.

View Article and Find Full Text PDF

Radar-Terahertz-Infrared Compatible Stealth Coaxial Silver Nanowire@Carbon Nano-Cable Aerogel.

Angew Chem Int Ed Engl

January 2025

Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115.

Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.

View Article and Find Full Text PDF

Electrochemical deposition of Ni on arrays of GaAs nanowires with n-type channels.

Nanotechnology

January 2025

Laboratory of micro- and nanoelectronics, Saint Petersburg Electrotechnical University 'LETI', Prof. Popova st. 5, 197022 St.Petersburg, Russia.

The processes of electrochemical deposition of Ni on vertically aligned GaAs nanowires (NWs) grown by molecular-beam epitaxy (MBE) using Au as a growth catalyst on n-type Si(111) substrates were studied. Based on the results of electrochemical deposition, it was concluded that during the MBE synthesis of NWs the self-induced formation of conductive channels can occur inside NWs, thereby forming quasi core-shell NWs. Depending on the length of the channel compare to the NW heights and the parameters of electrochemical deposition, the different hybrid metal-semiconductor nanostructures, such as Ni nanoparticles on GaAs NW side walls, Ni clusters on top ends of GaAs NWs, core-shell GaAs/Ni NWs, were obtained.

View Article and Find Full Text PDF

Wireless wearable multifunctional sensor based on carboxylated cellulose nanofibers/silver nanowires for ultra-sensitive, fast humidity response and body temperature monitoring.

Int J Biol Macromol

December 2024

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China. Electronic address:

Humidity and temperature sensors are considered as hotspots for the next generation of wearable multifunctional electronics. However, it is still a notable challenge to realize multifunctional sensors with high-performance humidity response, excellent mechanical properties, and accurate temperature monitoring capability. In this work, a hydrogen-bond cross-linked hybrid network was constructed between carboxystyrene-butadiene rubber (XSBR) and hydrophilic carboxylated cellulose nanofibers (CNF) noncovalently modified silver nanowires (AgNWs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!