Background: Keratins are structural, thiol-rich proteins, which comprise 90% of total poultry feather weight. Their favourable amino acid profile suggests the potential for use as a protein source and ergogenic aid for endurance athletes, following treatment to increase digestibility. This study investigated whether 4 weeks of soluble keratin (KER) consumption (0.8 g/kg bodyweight/day) by 15 endurance-trained males would have favourable effects on body composition, blood and cardiorespiratory variables, and cycling performance, compared to casein protein (CAS).

Methods: Supplementation was randomized, blinded and balanced, with a minimum eight-week washout period between trials. An exercise test to measure oxygen consumption during submaximal and maximal cycling exercise was completed at the start at and end of each intervention. Anthropometric (DEXA) and blood measures were made prior to and following each intervention period.

Results: Total body mass and percentage body fat did not change significantly (p > 0.05). However, a significantly greater increase in bone-free lean mass (LM) occurred with KER compared to CAS (0.88 kg vs 0.07 kg; p < 0.05). While no change in LM was evident for the trunk and arms, leg LM increased (0.45 ± 0.54 kg; p = 0.006) from baseline with KER. KER was not associated with changes in blood parameters, oxygen consumption, or exercise performance (p > 0.05).

Conclusions: These data suggest that KER is not useful as an ergogenic aid for endurance athletes but may be a suitable protein supplement for maximizing increases in lean body mass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161438PMC
http://dx.doi.org/10.1186/s12970-018-0251-xDOI Listing

Publication Analysis

Top Keywords

soluble keratin
8
body composition
8
composition blood
8
cycling performance
8
ergogenic aid
8
aid endurance
8
endurance athletes
8
body mass
8
body
5
chronic soluble
4

Similar Publications

Chemical composition and techno-functional properties of high-purity water-soluble keratein and its enzymatic hydrolysates.

Food Chem

December 2024

Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland. Electronic address:

This study compared the effectiveness of urea-containing and urea-free L-cysteine solutions in extracting high-quality feather keratin and evaluated commercial proteases for producing keratin-derived bioactive peptides. The urea-assisted extraction was crucial for achieving high structural integrity and yield of soluble keratin. The keratin isolate exhibited oil-holding capacity of 9.

View Article and Find Full Text PDF

Generation of glucosylantimycins by heterologous expression of a promiscuous glycosyltransferase in a deepsea-derived .

Nat Prod Res

January 2025

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.

Antimycins are a class of depsipeptide compounds that exhibit diverse bioactivities. However, their potential clinical applications are hampered by high cell toxicities. Glycosylation usually has profound impacts on the physicochemical properties, bioactivities and toxicities of natural products.

View Article and Find Full Text PDF

High-yield soluble production of recombinant β-keratin from Gallus gallus feathers using an experimental design approach.

J Biotechnol

February 2025

Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Rio de Janeiro, RJ, Brazil. Electronic address:

The search for new non-animal textile materials has increased yearly as environmental awareness and veganism continue to spread, driving the development of greener fabrics. Concurrently, β-keratin, a fibrous, resistant, and insoluble protein shows great potential for producing innovative biomaterials. However, β-keratin is naturally abundant in animal feathers.

View Article and Find Full Text PDF

Lignin-based cryogels for advancing sustainable crop production via enhanced nutrient accessibility and growth efficiency.

Int J Biol Macromol

January 2025

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Sustainable lignin-based materials are becoming increasingly valuable in agriculture, where climate change and nutrient deficiencies threaten crop productivity. We developed lignin-derived cryogels using waste biomass to improve soil nutrients, seed germination, water retention, and photosynthetic pigment levels. These cryogels were synthesized with gum Arabic (GA), keratin (K), and N-vinylpyrrolidone at lignin concentrations of 0.

View Article and Find Full Text PDF

Quercetin@β-Cyclodextrin Conjugated Keratin/Polyurethane Biocomposite Mats for Infected Diabetic Wound Healing.

Langmuir

November 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.

Chronic diabetic wounds suffer from severe complications caused by long-term high levels of oxidative stress and bacterial infection. Quercetin (Que) has excellent anti-inflammatory, antioxidant, and antibacterial activity, making it a promising drug to address the above issues. To exploit the benefits of Que in a more effective and sustained way to treat diabetic wounds, carboxymethyl β-cyclodextrin (CMCD) was synthesized and conjugated to keratin, then complexed with Que to form Que@Ker-CMCD inclusion, followed by electrospinning with polyurethane (PU) to afford Que@Ker-CMCD/PU mats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!