Medicinal plants over time have proven to have potential to manage a huge number of diseases and disorders and thus have become a great source of pharmaceutical drugs. One of such plants is Tapinanthus bangwensis (African mistletoe). It is a semiparasitic and epiphytic plant growing on citrus tree, obtaining its food photosynthetically while its nutrient and water is got from the host plant. The aim of this study was to determine the cytotoxicological and hepatocurative effect of aqueous fraction of T bangwensis in acetaminophen (paracetamol)-induced Wistar rats. The antioxidant potential of the plant was determined by 2,2-diphenyl-1-picrylhydrazine scavenging and ferric reducing power assays. The cytotoxic effect was determined using Allium cepa test while the liver biochemical indices were determined by standard protocols. Data obtained were analyzed by 2-way analysis of variance at 95% confidence level and reported as mean ± standard deviation. The concentrated aqueous fraction of T bangwensis was found to be 23.3 g (58.25%). Quantitative determination of some vital phytochemicals revealed the following: flavonoid (84.6 ± 0.41 mg/100 g), phenol (147.5 ± 1.07 mg/100 g), tannin (31 ± 0.85 mg/ 100 g), alkaloid (23.45 ± 0.09 mg/100 g), and saponin (0.146 ± 0.0 mg/100 g). Treatment of rats with the aqueous extract of T bangwensis significantly decreased paracetamol-induced elevation of activities of liver function indices, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol level and increased the albumin, total protein, and high-density lipoprotein levels. The plant extract also attenuated the paracetamol elevated lipid peroxidation product, malondialdehyde. The research findings suggest that aqueous extract of T bangwensis is slightly cytotoxic, possesses appreciable antioxidant property and exhibited hepatocurative effect against paracetamol-induced hepatoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166302 | PMC |
http://dx.doi.org/10.1177/2515690X18801577 | DOI Listing |
Microorganisms
November 2024
School of Earth System Science, Tianjin University, Tianjin 300072, China.
Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Crop Production, Czech University of Life Sciences Prague, Czech Republic.
King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
Int J Health Sci (Qassim)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia.
Objective: Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China.
The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH, ∙OOH, and O in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!