Water Salinity Should Be Reduced for Irrigation to Minimize Its Risk of Increased Soil N₂O Emissions.

Int J Environ Res Public Health

College of Agricultural Engineering, Hohai University, Nanjing 210098, China.

Published: September 2018

To reveal the effect of irrigation salinity on soil nitrous oxide (N₂O) emission, pot experiments were designed with three irrigation salinity levels (NaCl and CaCl₂ of 1, 2.5 and 4 g/L equivalence, Ec = 3.6, 8.1 and 12.7 ds/m), either for 0 kg N/ha (N0) or 120 kg N/ha (N120) nitrogen inputs. N₂O emissions from soils irrigated at different salinity levels varied in a similar pattern which was triggered by soil moisture dynamics. Yet, the magnitudes of pulse N₂O fluxes were significantly varied, with the peak flux at 5 g/L irrigation salinity level being much higher than at 2 and 8 g/L. Compared to fresh water irrigated soils, cumulative N₂O fluxes were reduced by 22.7% and 39.6% (N0), 29.1% and 39.2% (N120) for soils irrigated with 2 and 8 g/L saline water, while they were increased by 87.7% (N0) and 58.3% (N120) for soils irrigated with 5 g/L saline water. These results suggested that the effect degree of salinity on consumption and production of N₂O might vary among irrigation salinity ranges. As such, desalinating brackish water to a low salinity level (such as 2 g/L) before it is used for irrigation might be helpful for solving water resources crises and mitigating soil N₂O emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210170PMC
http://dx.doi.org/10.3390/ijerph15102114DOI Listing

Publication Analysis

Top Keywords

irrigation salinity
16
n₂o emissions
12
soils irrigated
12
soil n₂o
8
salinity levels
8
n₂o fluxes
8
g/l irrigation
8
salinity level
8
n120 soils
8
irrigated g/l
8

Similar Publications

Guava is a fruit crop widely exploited in the Northeast region of Brazil. However, its exploitation is limited by water scarcity and, in many cases, producers are forced to use water with high levels of salts in irrigation. Thus, it is necessary to develop techniques to induce plant tolerance to salt stress, and the foliar application of a non-enzymatic compound such as ascorbic acid is a promising alternative to mitigate the deleterious effects on plants.

View Article and Find Full Text PDF

Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.

View Article and Find Full Text PDF

Salinity affects crop growth and productivity, and this stress can be increased along with drought or high temperature stresses and poor irrigation management. Cultivation of salt-tolerant crops plays a critical role in enhancing crop yield under salt stress. In the past few decades, the mechanisms of plant adaptation to salt stress have been described, especially relying on ionic homeostasis, reactive oxygen species (ROS) scavenging, and phytohormone signaling.

View Article and Find Full Text PDF

Maintaining good water quality is essential for drinking and agriculture. High water quality is crucial for irrigation to boost agricultural productivity and ensure sustainable water resource management. This study used in-depth physical and chemical analysis of water samples to evaluate the Kakia-Esamburmbur watershed's irrigation water sustainability.

View Article and Find Full Text PDF

Crop farming by smallholder farmers of Ethiopia and Sile Watershed is practiced based on commonsense experiences of farmers. This study was targeted to evaluate the suitability of land for the production of four major crops in Sile Watershed. Data were acquired from sources such as climate data (from CHRS data portal CRU TSv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!