We have previously found that the transcription factor PPARγ2 contributes to the mechanism of action of the ketogenic diet (KD), an established treatment for pediatric refractory epilepsy. Among the wide-array of genes regulated by PPARγ, previous studies have suggested that antioxidants such as catalase may have prominent roles in KD neuroprotective and antiseizure effects. Here, we tested the hypothesis that the KD increases catalase through activation of PPARγ2, and that this action is part of the mechanism of antiseizure efficacy of the KD. We determined catalase mRNA and protein expression in hippocampal tissue from epileptic Kcna1 mice, Pparγ2 mice and Pparγ2 mice. We found that a KD increases hippocampal catalase expression in Kcna1 and Pparγ2 mice, but not Pparγ2 mice. Next, we determined whether catalase contributes to KD seizure protection. We found that the KD reduces pentylenetetrazole (PTZ)-induced seizures; however, pretreatment with a catalase inhibitor occluded KD effects on PTZ seizures. These results suggest that the KD regulates catalase expression through PPARγ2 activation, and that catalase may contribute to the KD antiseizure efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192850 | PMC |
http://dx.doi.org/10.1016/j.eplepsyres.2018.09.009 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
College of Sport and Health, Shandong Sport University, Jinan, Shandong, 250102, China.
Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate intensity continuous exercise group (HF-M), high intensity continuous exercise group (HF-H) and high intensity intermittent exercise group (HF-T).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.
Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.
J Neurophysiol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
During development, cells undergo a sequence of specification events to form functional tissues and organs. To investigate complex tissue development, it is crucial to visualize how cell lineages emerge and to be able to manipulate regulatory factors with temporal control. We recently developed TEMPO (Temporal Encoding and Manipulation in a Predefined Order), a genetic tool to label with different colors and genetically manipulate consecutive cell generations in vertebrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!