Campylobacteriosis is a widespread infectious disease, leading to a major health and economic burden. Chickens are considered as the most common infection source for humans. Campylobacter mainly multiplies in the mucus layer of their caeca. No effective control measures are currently available, but passive immunisation of chickens with pathogen-specific maternal IgY antibodies, present in egg yolk of immunised chickens, reduces Campylobacter colonisation. To explore this strategy further, anti-Campylobacter nanobodies, directed against the flagella and major outer membrane proteins, were fused to the constant domains of chicken IgA and IgY, combining the benefits of nanobodies and the effector functions of the Fc-domains. The designer chimeric antibodies were effectively produced in leaves of Nicotiana benthamiana and seeds of Arabidopsis thaliana. Stable expression of the chimeric antibodies in seeds resulted in production levels between 1% and 8% of the total soluble protein. These in planta produced antibodies do not only bind to their purified antigens but also to Campylobacter bacterial cells. In addition, the anti-flagellin chimeric antibodies are reducing the motility of Campylobacter bacteria. These antibody-containing Arabidopsis seeds can be tested for oral passive immunisation of chickens and, if effective, the chimeric antibodies can be produced in crop seeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160005PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204222PLOS

Publication Analysis

Top Keywords

chimeric antibodies
16
passive immunisation
8
immunisation chickens
8
antibodies
7
campylobacter
5
planta expression
4
expression nanobody-based
4
nanobody-based designer
4
designer chicken
4
chicken antibodies
4

Similar Publications

Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.

View Article and Find Full Text PDF

Background And Hypothesis: Teclistamab, a novel bispecific monoclonal antibody targeting CD3 and B-cell maturation antigen (BCMA), and chimeric antigen receptor T-cell (CAR-T) therapy are promising options for treating relapsed/refractory multiple myeloma (MM). However, the rates of acute kidney injury (AKI) associated with teclistamab remain inadequately characterized. This study aims to compare the incidence, severity, and outcomes of AKI between patients receiving teclistamab and CAR-T therapy.

View Article and Find Full Text PDF

Background: Adaptive cellular therapy (ACT), particularly chimeric antigen receptor (CAR)-T cell therapy, has been successful in the treatment of hemopoietic malignancies. However, poor trafficking of administered effector T cells to the tumor poses a great hurdle for this otherwise powerful therapeutic approach in solid cancers. Our previous study revealed that targeting CD93 normalizes tumor vascular functions to improve immune checkpoint blockade therapy.

View Article and Find Full Text PDF

Chimeric antigen receptor-transduced T (CAR-T) cell therapy is an effective cell therapy against advanced hematological tumors. However, the use of autologous T cells limits its timely and universal generation. Allogeneic CAR-T cell therapy may be a good alternative as a ready-to-use therapeutic.

View Article and Find Full Text PDF

Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B-cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!