On the Structure of Amorphous Mesoporous Silica Nanoparticles by Aberration-Corrected STEM.

Small

INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.

Published: October 2018

Mesoporous silica materials have demonstrated a vast spectrum of applications, stimulating an intensive field of study due to their potential use as nanocarriers. Nonetheless, when produced at the nanoscale, their structural characterization is hindered due to the re-arrangement of the pores. To address this issue, this work combines molecular dynamics simulations with electron microscopy computer simulations and experimental results to provide an insight into the structure of amorphous mesoporous silica nanoparticles. The amorphous silica model is prepared using a simple melt-quench molecular dynamics method, while the reconstruction of the mesoporous nanoparticles is carried out using a methodology to avoid false symmetry in the final model. Simulated scanning transmission electron microscopy images are compared with experimental images, revealing the existence of structural domains, created by the misalignment of the pores to compensate the surface tension of these spherical nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201802180DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
12
structure amorphous
8
amorphous mesoporous
8
silica nanoparticles
8
molecular dynamics
8
electron microscopy
8
mesoporous
4
silica
4
nanoparticles
4
nanoparticles aberration-corrected
4

Similar Publications

Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics.

Adv Colloid Interface Sci

January 2025

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:

In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.

View Article and Find Full Text PDF

Bactericidal Hemostatic Sponge: A Point of Care Solution to Combat Traumatic Injury.

Adv Healthc Mater

January 2025

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!