AI Article Synopsis

  • * Research using iTRAQ revealed that methane production decreases and protein folding/degradation increases at high (71°C) and low (4°C) temperatures.
  • * Key proteins linked to environmental processing and cell structure may be crucial for methane formation and temperature adaptation, with predictive analysis indicating 32 gene clusters involved in these responses.

Article Abstract

The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high- and low-temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature-dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528648PMC
http://dx.doi.org/10.1002/mbo3.715DOI Listing

Publication Analysis

Top Keywords

methane formation
16
methanothermobacter thermautotrophicus
12
temperature
8
temperature growth
8
proteins predicted
8
response m thermautotrophicus
8
methane
5
comparative proteomic
4
proteomic analysis
4
analysis methanothermobacter
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

The role of sulfidated zero-valent iron in enhancing anaerobic digestion of waste activated sludge.

J Environ Manage

January 2025

Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:

Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.

View Article and Find Full Text PDF

Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO Nanowires.

Molecules

January 2025

College of Computer Science and Cyber Security (Pilot Software College), Chengdu University of Technology, Chengdu 610059, China.

The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO nanowires (TiO NWs) was performed. With metal loading, the electric and optical properties of TiO NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!