Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lithium-rich Li[Li Fe Ni Mn ]O (0.4Li MnO -0.6LiFe Ni Mn O , LFNMO) is a new member of the xLi MnO ·(1 - x)LiMO family of high capacity-high voltage lithium-ion battery (LIB) cathodes. Unfortunately, it suffers from the severe degradation during cycling both in terms of reversible capacity and operating voltage. Here, the corresponding degradation occurring in LFNMO at an atomic scale has been documented for the first time, using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), as well as tracing the elemental crossover to the Li metal anode using X-ray photoelectron spectroscopy (XPS). It is also demonstrated that a cobalt phosphate surface treatment significantly boosts LFNMO cycling stability and rate capability. Due to cycling, the unmodified LFNMO undergoes extensive elemental dissolution (especially Mn) and O loss, forming Kirkendall-type voids. The associated structural degradation is from the as-synthesized R-3m layered structure to a disordered rock-salt phase. Prior to cycling, the cobalt phosphate coating is epitaxial, sharing the crystallography of the parent material. During cycling, a 2-3 nm thick disordered Co-rich rock-salt structure is formed as the outer shell, while the bulk material retains R-3m crystallography. These combined cathode-anode findings significantly advance the microstructural design principles for next-generation Li-rich cathode materials and coatings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201802570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!