Targeted proteolysis of the disordered Parkinson's disease protein alpha-synuclein (αSyn) constitutes an important event under physiological and pathological cell conditions. In this work, site-specific αSyn cleavage by different endopeptidases in vitro and by endogenous proteases in extracts of challenged and unchallenged cells was studied by time-resolved NMR spectroscopy. Specifically, proteolytic processing was monitored under neutral and low pH conditions and in response to Rotenone-induced oxidative stress. Further, time-dependent degradation of electroporation-delivered αSyn in intact SH-SY5Y and A2780 cells was analyzed. Results presented here delineate a general framework for NMR-based proteolysis studies in vitro and in cellulo, and confirm earlier reports pertaining to the exceptional proteolytic stability of αSyn under physiological cell conditions. However, experimental findings also reveal altered protease susceptibilities in selected mammalian cell lines and upon induced cell stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201800056 | DOI Listing |
J Neurosci
January 2025
Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo FI-00076, Finland.
Our visual system enables us to effortlessly navigate and recognize real-world visual environments. Functional magnetic resonance imaging (fMRI) studies suggest a network of scene-responsive cortical visual areas, but much less is known about the temporal order in which different scene properties are analysed by the human visual system. In this study, we selected a set of 36 full-colour natural scenes that varied in spatial structure and semantic content that our male and female human participants viewed both in 2D and 3D while we recorded magnetoencephalography (MEG) data.
View Article and Find Full Text PDFMacromolecules
December 2024
Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization.
View Article and Find Full Text PDFSci Adv
December 2024
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
Tissue imaging is usually captured by hospital-based nuclear magnetic resonance. Here, we present a wearable triboelectric impedance tomography (TIT) system for noninvasive imaging of various biological tissues. The imaging mechanism relies on the obtained impedance information from the different soft human tissues.
View Article and Find Full Text PDFVasc Specialist Int
December 2024
Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
The complex hemodynamic environment within the aortic lumen plays a crucial role in the progression of aortic diseases such as aneurysms and dissections. Traditional imaging modalities often fail to provide comprehensive flow dynamics that are essential for precise risk assessment and timely intervention. The advent of time-resolved, three-dimensional (3D) phase-contrast magnetic resonance imaging (4D flow MRI) has revolutionized the evaluation of aortic diseases by allowing a detailed visualizations of flow patterns and quantification of hemodynamic parameters.
View Article and Find Full Text PDFPerylene diimide (PDI) derivatives have been extensively explored as chromophoric dyes for functional organic materials. Here, the custom synthesized tyrosine appended perylene diimide (PDI-Tyr) derivative has shown strong aggregation in aqueous medium diminishing its emissive features, which was surpassed by the supramolecular interaction with β-cyclodextrin (β-CD). Complex formation between PDI-Tyr and β-CD, proposed from the absorption and emission studies, have been substantiated by the H-NMR, ITC and geometry optimization data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!