A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo microscopic diffusional kurtosis imaging with symmetrized double diffusion encoding EPI. | LitMetric

In vivo microscopic diffusional kurtosis imaging with symmetrized double diffusion encoding EPI.

Magn Reson Med

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.

Published: January 2019

Purpose: Diffusional kurtosis imaging (DKI) measures the deviation of the displacement probability from a normal distribution, complementing the data commonly acquired by diffusion MRI. It is important to elucidate the sources of kurtosis contrast, particularly in biological tissues where microscopic kurtosis (intrinsic kurtosis) and diffusional heterogeneity may co-exist.

Methods: We have developed a technique for microscopic kurtosis MRI, dubbed microscopic diffusional kurtosis imaging (µDKI), using a symmetrized double diffusion encoding (s-DDE) EPI sequence. We compared this newly developed µDKI to conventional DKI methods in both a triple compartment phantom and in vivo.

Results: Our results showed that whereas conventional DKI and µDKI provided similar measurements in a compartment of monosphere beads, kurtosis measured by µDKI was significantly less than that measured by conventional DKI in a compartment of mixed Gaussian pools. For in vivo brain imaging, µDKI showed small yet significantly lower kurtosis measurement in regions of the cortex, CSF, and internal capsule compared to the conventional DKI approach.

Conclusions: Our study showed that µDKI is less susceptible than conventional DKI to sub-voxel diffusional heterogeneity. Our study also provided important preliminary demonstration of our technique in vivo, warranting future studies to investigate its diagnostic use in examining neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258297PMC
http://dx.doi.org/10.1002/mrm.27419DOI Listing

Publication Analysis

Top Keywords

conventional dki
20
diffusional kurtosis
12
kurtosis imaging
12
kurtosis
9
microscopic diffusional
8
symmetrized double
8
double diffusion
8
diffusion encoding
8
microscopic kurtosis
8
diffusional heterogeneity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!