The production of high-quality thin-film insulators is essential to develop advanced technologies based on electron tunneling. Current insulator deposition methods, however, suffer from a variety of limitations, including constrained substrate sizes, limited materials options, and complexity of patterning. Here, we report the deposition of large-area AlO films by a solution process and its integration in metal-insulator-metal devices that exhibit I- V signatures of Fowler-Nordheim electron tunneling. A unique, high-purity precursor based on an aqueous solution of the nanocluster flat-Al transforms to thin AlO insulators free of the electron traps and emission states that commonly inhibit tunneling in other films. Tunneling is further confirmed by the temperature independence of device current.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b08986DOI Listing

Publication Analysis

Top Keywords

electron tunneling
8
tunneling
5
demonstration fowler-nordheim
4
fowler-nordheim tunneling
4
tunneling simple
4
simple solution-processed
4
solution-processed thin
4
thin films
4
films production
4
production high-quality
4

Similar Publications

Effects of Nanosilica on the Properties of Ultrafine Cement-Fly Ash Composite Cement Materials.

Nanomaterials (Basel)

December 2024

School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, China.

The increasing incidence of structural failures, such as cracks and collapses, in rock masses within mines, tunnels, and other civil engineering environments has attracted considerable attention among scholars in recent years. Grouting serves as a principal solution to these issues. The Renlou Coal Mine in the Anhui Province is used as a case study to evaluate the effectiveness of nanosilica (NS) as an additive in ultrafine cement (UC), introducing a novel grouting material for practical applications.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO/SrTiO)/LaCoO/Nb:SrTiO (Pt/(LCO/STO)/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively.

View Article and Find Full Text PDF

Impact of Potassium Doping on a Two-Dimensional Kagome Organic Framework on Ag(111).

J Phys Chem Lett

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.

Alkali element doping has significant physical implications for two-dimensional materials, primarily by tuning the electronic structure and carrier concentration. It can enhance interface electronic interactions, providing opportunities for effective charge transfer at metal-organic interfaces. In this work, we investigated the effects of gradually increasing the level of K doping on the lattice structure and electronic properties of an organometallic coordinated Kagome lattice on a Ag(111) surface.

View Article and Find Full Text PDF

Strong-Field Theory of Attosecond Tunneling Microscopy.

Phys Rev Lett

December 2024

Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel; and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Attosecond observations of coherent electron dynamics in molecules and nanostructures can be achieved by combining conventional scanning tunneling microscopy (STM) with ultrashort femtosecond laser pulses. While experimental studies in the subcycle regime are under way, a robust strong-field theory description has remained elusive. Here we devise a model based on the strong-field approximation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!