Design, Preparation, and Performance of a Novel Bilayer Tissue-Engineered Small-Diameter Vascular Graft.

Macromol Biosci

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, China.

Published: March 2019

In clinical practice, the need for small-diameter vascular grafts continues to increase. Decellularized xenografts are commonly used for vascular reconstructive procedures. Here, porcine coronary arteries are decellularized, which destroys the extracellular matrix structure, leading to the decrease of vascular strength and the increase of vascular permeability. A bilayer tissue-engineered vascular graft (BTEV) is fabricated by electrospinning poly(l-lactide-co-carprolactone)/gelatin outside of the decellularized vessels and functionalized by immobilizing heparin, which increases the biomechanical strength and anticoagulant activity of decellularized vessels. The biosafety and efficacy of the heparin-modified BTEVs (HBTEVs) are verified by implanting in rat models. HBTEVs remain patent and display no expansion or aneurism. After 4 weeks of implantation, a cell monolayer in the internal surface and a dense middle layer have formed, and the mechanical properties of regenerated vessels are similar to those of rat abdominal aorta. Therefore, HBTEVs can be used for rapid remodeling of small-diameter blood vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201800189DOI Listing

Publication Analysis

Top Keywords

bilayer tissue-engineered
8
small-diameter vascular
8
vascular graft
8
decellularized vessels
8
vascular
6
design preparation
4
preparation performance
4
performance novel
4
novel bilayer
4
tissue-engineered small-diameter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!