AI Article Synopsis

  • Chronic exposure to fluoride is a significant public health issue that can lead to skeletal fluorosis, causing pain and potential disability due to abnormal bone cell activity.
  • Research focused on p16 gene methylation revealed that fluoride exposure causes hypermethylation and reduced expression of p16 in blood cells, correlating with skeletal fluorosis severity.
  • In lab studies, sodium fluoride induced p16 hypermethylation in osteoblasts, promoting cell proliferation and linking this response to the development of skeletal fluorosis, which could be reversed using a methylation inhibitor.

Article Abstract

Chronic exposure to fluoride continues to be a public health problem worldwide, affecting thousands of people. Fluoride can cause abnormal proliferation and activation of osteoblast and osteoclast, leading to skeletal fluorosis that can cause pain and harm to joints and bones and even lead to permanent disability. Nevertheless, there is no recognized mechanism to explain the bone lesions of fluorosis. In this work, we performed a population study and in vitro experiments to investigate the pathogenic mechanism of skeletal fluorosis in relation to methylation of the promoter of p16. The protein coded by the p16 gene inhibits cdk (cyclin-dependent kinase) 4/cdk6-mediated phosphorylation4 of retinoblastoma gene product and induces cell cycle arrest. The results showed that hypermethylation of p16 and reduced gene expression was evident in peripheral blood mononuclear cells of patients with fluorosis and correlated with the level of fluoride exposure. Studies with cell cultures of osteoblasts revealed in response to sodium fluoride (NaF) treatment, there was an induction of p16 hypermethylation and decreased expression, leading to increased cell proliferation, a longer S-phase of the cell cycle, and development of skeletal fluorosis. Further, the methylation inhibitor, 5-aza-2-deoxycytidine, reversed the p16 hypermethylation and expression in response to NaF. These results reveal a regulatory role of p16 gene methylation on osteoblasts activation during the development of skeletal fluorosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22655DOI Listing

Publication Analysis

Top Keywords

skeletal fluorosis
16
p16 gene
8
cell cycle
8
p16 hypermethylation
8
development skeletal
8
p16
7
fluorosis
6
fluoride
5
aberrant methylation-induced
4
methylation-induced dysfunction
4

Similar Publications

Groundwater contamination with fluoride is a considerable public health concern that affects millions of people worldwide. The rapid growth of urbanization has led to increase in groundwater contamination. The health risk assessment focuses on both acute and chronic health consequences as it investigates the extent and effects of fluoride exposure through contaminated groundwater.

View Article and Find Full Text PDF

The potential of urinary miR-200c-3p as a biomarker of fluorosis in rats.

Ecotoxicol Environ Saf

January 2025

Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China. Electronic address:

Fluorine is a strong oxidizing element and excessive intake can have harmful effects, particularly on the body's calcified tissues. Recent studies have demonstrated a link between miRNA and fluorosis. This study aimed to evaluate the time-dose-effect relationship of miR-200c-3p in plasma, urine and cartilage of rats with drinking water fluorosis, and to explore its potential as a biomarker.

View Article and Find Full Text PDF

Abnormal methylation of Mill1 gene regulates osteogenic differentiation involved in various phenotypes of skeletal fluorosis in rats and methionine intervention.

Ecotoxicol Environ Saf

December 2024

School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China. Electronic address:

Excessive fluoride intake can lead to skeletal fluorosis. Nutritional differences in the same fluoride-exposed environment result in osteosclerosis, osteoporosis, and osteomalacia. DNA methylation has been found to be involved in skeletal fluorosis and is influenced by environment and nutrition.

View Article and Find Full Text PDF
Article Synopsis
  • The paper assesses fluoride pollution in drinking water sources in Swabi, Pakistan, highlighting its severe impact on human health, particularly fluorosis.
  • It involved collecting and analyzing 126 groundwater and 18 surface water samples, revealing that 72.2% of groundwater samples exceeded WHO's safe fluoride limit.
  • The study identified key factors contributing to fluoride enrichment in the aquifer, including natural processes and human activities, emphasizing the need for improved water management to protect local communities from health risks associated with high fluoride levels.
View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva and progressive osseous heteroplasia are genetic forms of heterotopic ossification (HO). Fibrodysplasia ossificans progressiva is caused by ACVR1 gene mutations, while progressive osseous heteroplasia is caused by GNAS gene mutations. Nongenetic HO typically occurs after trauma or surgery, with an occurrence rate of 20-60%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!