Sample Preparation for Metaproteome Analyses of Soil and Leaf Litter.

Methods Mol Biol

Department of Microbial Physiology and Molecular Biology, Institute for Microbiology, University Greifswald, Greifswald, Germany.

Published: April 2019

Soil and litter metaproteomics, assigning soil and litter proteins to specific phylogenetic and functional groups, has a great potential to shed light on the impact of microbial diversity on soil ecosystem functioning. However, metaproteomic analysis of soil and litter is often hampered by the enormous heterogeneity of the soil matrix and high concentrations of humic acids. To circumvent these challenges, sophisticated protocols for sample preparation have to be applied. This chapter provides the reader with detailed information on well-established protocols for protein extraction from soil and litter samples together with protocols for further sample preparation for subsequent MS analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8695-8_21DOI Listing

Publication Analysis

Top Keywords

soil litter
16
sample preparation
12
protocols sample
8
soil
7
litter
5
preparation metaproteome
4
metaproteome analyses
4
analyses soil
4
soil leaf
4
leaf litter
4

Similar Publications

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

Microbial Community Structure, Diversity, and Succession During Decomposition of Kiwifruit Litters with Different Qualities.

Microorganisms

December 2024

Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.

There are differences in the litter quality and decomposition rate of kiwifruit varieties, but it is not clear whether these differences are related to microbial communities. The leaf litters of two kiwifruit varieties ( cv 'Hongyang' and cv 'Jinyan') were taken as objects, and the structure, diversity, and succession of the soil microbial communities were analyzed using an in situ decomposition experiment. Moreover, the contents of C, N, P, and K in the litters during decomposition were analyzed.

View Article and Find Full Text PDF

Forest ecosystem nutrient cycling functions are the basis for the survival and development of organisms, and play an important role in maintaining the forest structural and functional stability. However, the response of forest nutrient cycling functions at the ecosystem level to whole-tree harvesting remains unclear. Herein, we calculated the ecosystem nitrogen (N), phosphorus (P), and potassium (K) absorption, utilization, retention, cycle, surplus, accumulation, productivity, turnover and return parameters and constructed N, P, and K cycling function indexes to identify the changes in ecosystem N, P, and K cycling functions in a secondary forest in the Qinling Mountains after 5 years of five different thinning intensities (0% (CK), 15%, 30%, 45%, and 60%).

View Article and Find Full Text PDF

Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems.

Glob Chang Biol

January 2025

State Key Laboratory of Urban and Regional Ecology, Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!