The origin and the magnitude of the charge in a macroion are critical questions in mass spectrometry analysis coupled to electrospray and other ionization techniques that transfer analytes from the bulk solution into the gaseous phase via droplets. In many circumstances, it is the later stages of the existence of a macroion in the containing solvent drop before the detection that determines the final charge state. Experimental characterization of small (with linear dimensions of several nanometers) and short-lived droplets is quite challenging. Molecular simulations in principle may provide insight exactly in this challenging for experiments regime. We discuss the strengths and weaknesses of the molecular modeling of electrosprayed droplets using molecular dynamics. We illustrate the limitations of the molecular modeling in the analysis of large macroions and specifically proteins away from their native states. Graphical Abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13361-018-2039-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!