Circular RNAs in Cardiovascular Diseases.

Adv Exp Med Biol

School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China.

Published: February 2019

Circular RNAs (circRNAs), a group of circular RNA molecules with a 3',5'-phosphodiester bond at the junction site, are generated by back-splicing of precursor mRNAs. Most of the circular RNAs originate from the exon region of the encoded protein, and some are derived from intron regions, antisense transcripts, or long noncoding RNAs. Circular RNAs are abundantly in eukaryotic transcriptome and participate in various biological processes. It is closely associated with various diseases such as tumors, diabetes, nervous system diseases, and cardiovascular diseases. In cardiovascular system, numerous circRNAs have been identified and involved in important processes of cardiovascular development and diseases. Here we will review the latest research progress of circular RNA in cardiovascular diseases. Also, we will outline the specific examples of circRNAs involved in cardiovascular system regulatory effects, including act as miRNA sponges, interaction with RNA-binding proteins, regulated by RNA-binding proteins and serve as biomarkers. In addition, potential mechanisms underlying the regulatory role of circRNAs in cardiovascular diseases will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-13-1426-1_15DOI Listing

Publication Analysis

Top Keywords

circular rnas
16
cardiovascular diseases
16
diseases will
12
circular rna
8
diseases cardiovascular
8
rna-binding proteins
8
cardiovascular
7
diseases
7
circular
6
rnas cardiovascular
4

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

With the rapid increase in the number of implant operations, the incidence of bone infections has increased. Methicillin-resistant Staphylococcus aureus (S. aureus) and other emerging fully drug-resistant strains make the management of bone infections even more challenging.

View Article and Find Full Text PDF

Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.

View Article and Find Full Text PDF

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

The complete genome sequence of , a goldthread anthracnose pathogen, was sequenced using PacBio Revio and MGI DNBSEQ-T7 PE150. It contains 10 chromosomes, 5 mini chromosomes, a circular mitochondrial chromosome, and 13,129 genes predicted with RNA-Seq data in a 52.13-Mb genome with an of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!