Role of PUMA in the methamphetamine-induced migration of microglia.

Metab Brain Dis

Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China.

Published: February 2019

In this study, we demonstrated that PUMA was involved in the microglial migration induced by methamphetamine. PUMA expression was examined by western blotting and immunofluorescence staining. BV2 and HAPI cells were pretreated with a sigma-1R antagonist and extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), c-Jun N-terminal protein kinase (JNK), and phosphatidylinositol-3 kinase (PI3K)/Akt inhibitors, and PUMA expression was detected by western blotting. The cell migration in BV2 and HAPI cells transfected with a lentivirus encoding red fluorescent protein (LV-RFP) was also examined using a wound-healing assay and nested matrix model and cell migration assay respectively. The molecular mechanisms of PUMA in microglial migration were validated using a siRNA approach. The exposure of BV2 and HAPI cells to methamphetamine increased the expression of PUMA, reactive oxygen species (ROS), the MAPK and PI3K/Akt pathways and the downstream transcription factor signal transducer and activator of transcription 3 (STAT3) pathways. PUMA knockdown in microglia transfected with PUMA siRNA attenuated the increased cell migration induced by methamphetamine, thereby implicating PUMA in the migration of BV2 and HAPI cells. This study demonstrated that methamphetamine-induced microglial migration involved PUMA up-regulation. Targeting PUMA could provide insights into the development of a potential therapeutic approach for the alleviation of microglia migration induced by methamphetamine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-018-0319-yDOI Listing

Publication Analysis

Top Keywords

bv2 hapi
16
hapi cells
16
microglial migration
12
migration induced
12
induced methamphetamine
12
cell migration
12
puma
10
migration
9
study demonstrated
8
puma expression
8

Similar Publications

Role of PUMA in the methamphetamine-induced migration of microglia.

Metab Brain Dis

February 2019

Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China.

In this study, we demonstrated that PUMA was involved in the microglial migration induced by methamphetamine. PUMA expression was examined by western blotting and immunofluorescence staining. BV2 and HAPI cells were pretreated with a sigma-1R antagonist and extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), c-Jun N-terminal protein kinase (JNK), and phosphatidylinositol-3 kinase (PI3K)/Akt inhibitors, and PUMA expression was detected by western blotting.

View Article and Find Full Text PDF

Tart Cherry Extracts Reduce Inflammatory and Oxidative Stress Signaling in Microglial Cells.

Antioxidants (Basel)

September 2016

USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.

Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglial cells, leading to decreases in nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression. Thus, the present study sought to determine if tart cherries-which improved cognitive behavior in aged rats-would be efficacious in reducing inflammatory and OS signaling in HAPI rat microglial cells.

View Article and Find Full Text PDF

Rhizoleucinoside, a Rhamnolipid-Amino Alcohol Hybrid from the Rhizobial Symbiont Bradyrhizobium sp. BTAi1.

Org Lett

March 2016

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Rhizoleucinoside (1), a unique rhamnolipid-amino alcohol hybrid, was isolated from the rhizobial symbiont bacterium Bradyrhizobium sp. BTAi1. Compound 1 features a rare rhamnolipid core attached to an unprecedented leucinol moiety.

View Article and Find Full Text PDF

Background: The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ) and lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Over the past two decades, it has become increasingly apparent that Alzheimer's disease neuropathology is characterized by activated microglia (brain resident macrophages) as well as the classic features of amyloid plaques and neurofibrillary tangles. The intricacy of microglial biology has also become apparent, leading to a heightened research interest in this particular cell type. Over the years a number of different microglial cell culturing techniques have been developed to study either primary mammalian microglia, or immortalized cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!