We report a method to synthesize a palladium-functionalized porous graphene xerogel structure. A graphene xerogel nanocomposite with a three-dimensional microstructure was obtained by chemical reduction of an aqueous dispersion of graphene oxide at mild temperature. After the graphene hydrogel has been placed in a K2PdCl4 solution, the spontaneous redox reaction between the reduced graphene and Pd2+ takes place, leading to the formation of nanohybrid materials consisting of a graphene porous matrix decorated with Pd nanoparticles. The final porosity of the material was tuned through drying the graphene hydrogel by solvent evaporation. The palladium functionalized porous graphene xerogels were successfully used for the catalytic reduction of Rhodamine 6G.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt02839g | DOI Listing |
Adv Colloid Interface Sci
January 2025
Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada. Electronic address:
Nanoscale Horiz
November 2024
Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
Biosens Bioelectron
October 2024
Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China. Electronic address:
Implantable cardiac pacemakers are crucial therapeutic tools for managing various cardiac conditions. For effective pacing, electrodes should exhibit flexibility, deformability, biocompatibility, and high conductivity/capacitance. Laser-induced graphene (LIG) shows promise due to its exceptional electrical and electrochemical properties.
View Article and Find Full Text PDFEnviron Res
September 2024
Chemical Technology Research Institute (INTEQUI-CONICET), National University of San Luis (UNSL), Faculty of Chemistry, Biochemistry and Pharmacy, Almirante Brown 1455, Capital, 5700, San Luis, Argentina. Electronic address:
Research on innovative approaches to the valorisation of glycerol as a subproduct of biodiesel production has acquired an increasing demand in the development of a circular economy around energy generation, especially, in the line of improvement of the heterogeneous metallic catalysts used. In this regard, carbon xerogels have gained importance due to their stability and modifiability, while transition metals such as copper stand out as a cost-effective alternative, resulting in a technology where surface engineering plays a crucial role in achieving competitive catalytic activity. Building upon this, current research evaluates doped xerogels (Si, N, or GO) as supports of Cu and catalysts by themselves for glycerol oxidation.
View Article and Find Full Text PDFGels
May 2024
Materiales Polifuncionales Basados en Carbono, Departamento de Química Inorgánica-Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente-Universidad de Granada (UEQ-UGR), 18071 Granada, Spain.
Carbon xerogel spheres co-doped with nitrogen and eco-graphene were synthesized using a typical solvothermal method. The results indicate that the incorporation of eco-graphene enhances the electrochemical properties, such as the current density (J) and the selectivity for the four transferred electrons (n). Additionally, nitrogen doping has a significant effect on the degradation efficiency, varying with the size of the carbon xerogel spheres, which could be attributed to the type of nitrogenous group doped in the carbon material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!