We carried out large-scale atomistic molecular dynamics simulations to study the growth of twin lamellar crystals of polyethylene initiated by small crystal seeds. By examining the size distribution of the stems-straight crystalline polymer segments-we show that the crystal edge has a parabolic profile. At the growth front, there is a layer of stems too short to be stable, and new stable stems are formed within this layer, leading to crystal growth. Away from the edge, the lengthening of the stems is limited by a lack of available slack length in the chains. This frustration can be relieved by mobile crystal defects that allow topological relaxation by traversing through the crystal. The results shed light on the process of polymer crystal growth and help explain initial thickness selection and lamellar thickening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150721 | PMC |
http://dx.doi.org/10.1021/acs.macromol.8b00857 | DOI Listing |
Polymers (Basel)
January 2025
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
In this research, fully biobased composites consisting of poly(butylene 2,5-furandicarboxylate) (PBF) and cellulose nanocrystals (CNC) were successfully prepared through a common solution and casting method. The influence of CNC on the crystallization behavior, mechanical property, and hydrophilicity of PBF was systematically investigated. Under different crystallization processes, the crystallization of PBF was obviously promoted by CNC as a biobased nucleating agent.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Forest and Fire Sciences, University of Idaho, Moscow, ID 83844-1132, USA.
This study investigated the valorization of industrial lignin for producing biodegradable polybutylene succinate (PBS)-lignin copolymers. PBS was blended with varying lignin contents (0-45 wt. %) and crosslinked/grafted using dicumyl peroxide (DCP).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Polymers, Composites and Biomaterials, National Research Council, via Previati n.1/E, 23900 Lecco, Italy.
This study explores the impact of blending polyethylene terephthalate (PET) with polybutylene terephthalate (PBT) on the thermal, structural, and mechanical properties of 3D-printed materials. Comprehensive analyses, including Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical testing, were conducted to assess the influence of blend composition. FT-IR confirmed that PET and PBT blend physically without transesterification, while TGA showed enhanced thermal stability with increasing PET content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!