An intricate link is becoming apparent between metabolism and cellular identities. Here, we explore the basis for such a link in an model for early mouse embryonic development: from naïve pluripotency to the specification of primordial germ cells (PGCs). Using single-cell RNA-seq with statistical modelling and modulation of energy metabolism, we demonstrate a functional role for oxidative mitochondrial metabolism in naïve pluripotency. We link mitochondrial tricarboxylic acid cycle activity to IDH2-mediated production of alpha-ketoglutarate and through it, the activity of key epigenetic regulators. Accordingly, this metabolite has a role in the maintenance of naïve pluripotency as well as in PGC differentiation, likely through preserving a particular histone methylation status underlying the transient state of developmental competence for the PGC fate. We reveal a link between energy metabolism and epigenetic control of cell state transitions during a developmental trajectory towards germ cell specification, and establish a paradigm for stabilizing fleeting cellular states through metabolic modulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315289 | PMC |
http://dx.doi.org/10.15252/embj.201899518 | DOI Listing |
PLoS One
January 2025
LP2N, Laboratoire Photonique Numérique et Nanosciences, University Bordeaux, Talence, France.
Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.
View Article and Find Full Text PDFLab Chip
January 2025
Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780901, Portugal.
Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.
View Article and Find Full Text PDFFront Genome Ed
January 2025
State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.
View Article and Find Full Text PDFBBA Adv
December 2024
Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia.
Down syndrome (DS), a genetic condition caused by trisomy 21 (T21), manifests various neurological symptoms, including intellectual disability, early neurodegeneration, and early-onset dementia. N-glycosylation is a protein modification that plays a critical role in numerous neurobiological processes and whose dysregulation is associated with a range of neurological disorders. However, whether N-glycosylation of neural glycoproteins is affected in DS has not been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!