Influence of early-life nutritional stress on songbird memory formation.

Proc Biol Sci

School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.

Published: September 2018

In birds, vocal learning enables the production of sexually selected complex songs, dialects and song copy matching. But stressful conditions during development have been shown to affect song production and complexity, mediated by changes in neural development. However, to date, no studies have tested whether early-life stress affects the neural processes underlying vocal learning, in contrast to song production. Here, we hypothesized that developmental stress alters auditory memory formation and neural processing of song stimuli. We experimentally stressed male nestling zebra finches and, in two separate experiments, tested their neural responses to song playbacks as adults, using either immediate early gene (IEG) expression or electrophysiological response. Once adult, nutritionally stressed males exhibited a reduced response to tutor song playback, as demonstrated by reduced expressions of two IEGs ( and ) and reduced neuronal response, in both the caudomedial nidopallium (NCM) and mesopallium (CMM). Furthermore, nutritionally stressed males also showed impaired neuronal memory for novel songs heard in adulthood. These findings demonstrate, for the first time, that developmental conditions affect auditory memories that subserve vocal learning. Although the fitness consequences of such memory impairments remain to be determined, this study highlights the lasting impact early-life experiences can have on cognitive abilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170808PMC
http://dx.doi.org/10.1098/rspb.2018.1270DOI Listing

Publication Analysis

Top Keywords

vocal learning
12
memory formation
8
song production
8
nutritionally stressed
8
stressed males
8
song
6
influence early-life
4
early-life nutritional
4
nutritional stress
4
stress songbird
4

Similar Publications

Elephant Sound Classification Using Deep Learning Optimization.

Sensors (Basel)

January 2025

School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK.

Elephant sound identification is crucial in wildlife conservation and ecological research. The identification of elephant vocalizations provides insights into the behavior, social dynamics, and emotional expressions, leading to elephant conservation. This study addresses elephant sound classification utilizing raw audio processing.

View Article and Find Full Text PDF

Associations of Voice Metrics with Postural Function in Parkinson's Disease.

Life (Basel)

December 2024

Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, 1575 Cambridge Street, Cambridge, MA 02115, USA.

Background: This study aimed to explore the potential associations between voice metrics of patients with PD and their motor symptoms.

Methods: Motor and vocal data including the Unified Parkinson's Disease Rating Scale part III (UPDRS-III), Harmonic-Noise Ratio (HNR), jitter, shimmer, and smoothed cepstral peak prominence (CPPS) were analyzed through exploratory correlations followed by univariate linear regression analyses. We employed these four voice metrics as independent variables and the total and sub-scores of the UPDRS-III as dependent variables.

View Article and Find Full Text PDF

Syllable as a Synchronization Mechanism That Makes Human Speech Possible.

Brain Sci

December 2024

Department of Speech, Hearing and Phonetic Sciences, Division of Psychology and Language Sciences, University College London, Chandler House 2 Wakefield Street, London WC1N 1PF, UK.

Speech is a highly skilled motor activity that shares a core problem with other motor skills: how to reduce the massive degrees of freedom (DOF) to the extent that the central nervous control and learning of complex motor movements become possible. It is hypothesized in this paper that a key solution to the DOF problem is to eliminate most of the temporal degrees of freedom by synchronizing concurrent movements, and that this is performed in speech through the syllable-a mechanism that synchronizes consonantal, vocalic, and laryngeal gestures. Under this hypothesis, syllable articulation is enabled by three basic mechanisms: target approximation, edge-synchronization, and tactile anchoring.

View Article and Find Full Text PDF

In otolaryngology, training often involves simulation in animal specimens, human cadavers, and artificial models to facilitate learning surgical procedures, reducing the time needed to acquire essential skills. Simulated training has become integral to medical education, particularly in microsurgical techniques, such as microlaryngeal surgery. These procedures, also known as phonomicrosurgery, are performed on the vocal folds using microscopic visualization and precision instruments with long shafts and millimetric tips.

View Article and Find Full Text PDF

Delta-opioid receptors (δ-ORs) are known to be involved in associative learning and modulating motivational states. We wanted to study if they were also involved in naturally-occurring reinforcement learning behaviors such as vocal learning, using the zebra finch model system. Zebra finches learn to vocalize early in development and song learning in males is affected by factors such as the social environment and internal reward, both of which are modulated by endogenous opioids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!