Background: Cervical cancer incidence and mortality is high in Uyghur ethnics. Their life style and dietary habit were different from other ethnics living together. Study on the role of trace elements in HPV infection and cervical lesion of Uyghur minority is needed for future intervention and prevention work.
Methods: In total, 833 Uyghur women were randomly selected from the screening site and hospital. The concentrations of the trace elements As, Fe, Cd, Ni, Cu, Zn, Mn, and Se were determined by atomic absorption spectrophotometry and inductively coupled plasma atomic emission spectroscopy. Univariate analysis was performed with chi-squared test between the HPV-positive and HPV-negative groups and between the case group and the control group. Multivariate analysis was performed with logistic regression.
Results: An As concentration ≥ 0.02 mg/kg was a risk factor for HPV infection (OR > 1, P < 0.05), and Ni concentration ≥ 0.1232 mg/kg and Se concentration ≥ 0.02 mg/kg were protective factors (OR < 1, P < 0.05). Concentrations of Fe ≥ 6.9153 mmol/L and As ≥0.02 mg/kg were risk factors for CIN2+ (OR > 1, P < 0.05), and concentrations of Ni ≥0.0965 mg/kg and Se ≥0.02 mg/kg were protective factors (OR < 1, P < 0.05).
Conclusions: Low serum concentrations of Se and Ni and a high serum concentration of As might be related to HPV infection and CIN2+ in Uyghur women in rural China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158806 | PMC |
http://dx.doi.org/10.1186/s12885-018-4734-6 | DOI Listing |
Obstet Gynecol Sci
January 2025
Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.
Human papillomavirus (HPV) is a key factor in gynecological oncology. This narrative review investigates the complex connection between HPV and various gynecological cancers. For a comprehensive exploration, we examined the association between persistent HPV infection and cervical cancer and its global prevalence.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China.
The N-end rule pathway is a protein degradation pathway mediated by the ubiquitin-proteasome system, which specifically targets and degrades target proteins by recognizing specific residues at the N-terminus of the proteins. The residues which play a crucial role in the N-end rule pathway are called degrons, also known as N-degrons, as they are usually unstable at the N-terminal end of the protein. Currently, several N-end rule pathways have been identified in the eukaryotes, including the Arg/N-end rule, Ac/N-end rule, and Pro/N-end rule pathways, as well as the recently discovered Gly/N-end rule pathway.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Institute for Developing Science and Health Initiatives (ideSHi), Dhaka, Bangladesh.
Increasing the uptake of Human Papillomavirus (HPV) vaccine among adolescent girls is a high priority for the government of Bangladesh. This study examines correlates of HPV vaccine adoption in Dhaka Division, the largest division in Bangladesh. The 18-day vaccination campaign was accompanied by multimedia messages.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, China.
Purpose: Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor microenvironment (TME), exhibiting dual roles across various cancer types. Depending on the context, TAMs can either suppress tumor progression and weaken drug sensitivity or facilitate tumor growth and drive therapeutic resistance. This study explores whether targeting TAMs can suppress the progression of head and neck squamous cell carcinoma (HNSCC) and improve the efficacy of chemotherapy.
View Article and Find Full Text PDFVirol J
January 2025
Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!