Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.8b03636 | DOI Listing |
Mikrochim Acta
January 2025
Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.
Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.
Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Southwest United Graduate School, Kunming, Yunnan 650092, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. Electronic address:
Compared to traditional 2D-cultured mesenchymal stem cells (MSCs), 3D-MSCs offer distinct advantages in disease treatment. However, large-scale culture of 3D-MSCs remains labor-intensive and time-consuming. Thus, developing cryopreservation method for 3D-MSCs is essential for clinical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!