Gummy stem blight (GSB) causes enormous losses to melon ( L.) production worldwide. We aimed to develop useful molecular markers linked to GSB resistance. In this study, 168 F plants were obtained from the F₁ population of a cross between the GSB-susceptible 'Cornell ZPPM 339' and the GSB-resistant 'PI482399' lines. A 3:1 ratio of susceptible and resistant genotypes was observed in the F₂ population, indicating control by a single recessive gene. Nucleotide-binding site leucine-rich repeat (NBS-LRR) genes confer resistance against insects and diseases in cucurbits including melon. We cloned and sequenced the TIR-NBS-LRR-type resistance gene MELO3C022157, located on melon chromosome 9, from resistant and susceptible lines. Sequence analysis revealed deletions in the first intron, a 2-bp frameshift deletion from the second exon and a 7-bp insertion in the 4th exon of the resistant line. We developed two insertion/deletion (InDel) markers, GSB9-kh-1 and GSB9-kh-2, which were found in the first intron of MELO3C022157 linked to GSB resistance. We validated these markers with the F₂ population and inbred lines. These InDels may be used to facilitate marker-assisted selection of GSB resistance in melon. However, functional analysis of overexpressing and/or knock-down mutants is needed to confirm the frameshift mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213961 | PMC |
http://dx.doi.org/10.3390/ijms19102914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!