The prognosis of colorectal cancer (CRC) is seriously affected by high intestinal mucosal permeability accompanied by increasing tumor load. Berberine, a natural plant-derived product, can protect the intestinal mucosal barrier and suppress tumor growth, but its effects on the intestinal mucosal barrier dysfunction of CRC have not yet been evaluated. Herein, we assessed the effects of berberine on the intestinal mucosal permeability of HCT116 tumor-bearing mice and the underlying mechanism. Berberine (6.25, 12.5, 25 mg/kg) was administered to tumor-bearing mice for 3 weeks by intraperitoneal injection, and saline was given to controls and models. Compared with the control group, tumor-bearing mice had increased intestinal mucosal permeability in the third week. Meanwhile, the body weight decreased by 4%-7%, the concentration of D-lactic acid in plasma increased, and the expressions of ZO1 and Occludin were down-regulated. The intestinal mucosa was impaired. Compared with the model group, berberine inhibited tumor growth in a dose-dependent manner (6.25, 12.5, 25 mg/kg), reduced the permeability of intestinal mucosa, and alleviated intestinal mucosal damage. HPLC showed that berberine decreased the content of polyamines in tumor tissue, whereas increased that in intestinal mucosa tissue. Western blot showed that berberine inhibited the expressions of ODC, C-MYC and HIF-1α, but up-regulated those of OAZ1 and SSAT. In short, berberine may exert antitumor effects by suppressing tumor growth and elevating the intestinal mucosal permeability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.08.130DOI Listing

Publication Analysis

Top Keywords

intestinal mucosal
28
tumor growth
16
tumor-bearing mice
16
mucosal permeability
16
intestinal mucosa
12
intestinal
11
effects berberine
8
permeability hct116
8
hct116 tumor-bearing
8
mucosal barrier
8

Similar Publications

Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood.

View Article and Find Full Text PDF

Background: Oxyberberine (OBB) is a naturally occurring isoquinoline alkaloid that is believed to possess various health-promoting properties, including anti-fungus, hepatoprotection, anti-inflammation, and anti-intestinal mucositis effects. Despite several studies reporting the health benefits of OBB in treating ulcerative colitis (UC), its specific mechanism of action has yet to be fully elucidated.

Purpose: This investigation is designed to explore the potential protective efficacy of OBB and the latent mechanism using an model of UC-like inflammatory intestinal cells.

View Article and Find Full Text PDF

PANoptosis in intestinal epithelium: its significance in inflammatory bowel disease and a potential novel therapeutic target for natural products.

Front Immunol

January 2025

Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.

The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.

View Article and Find Full Text PDF

Elafibranor: A promising therapeutic approach for liver fibrosis and gut barrier dysfunction in alcohol-associated liver disease.

World J Gastroenterol

January 2025

Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.

This article discusses the recent study written by Koizumi . Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, which is driven by complex mechanisms, including lipid accumulation, apoptosis, and inflammatory responses exacerbated by gut barrier dysfunction. The study explored the therapeutic potential of elafibranor, a dual peroxisome proliferator-activated receptor alpha/delta agonist.

View Article and Find Full Text PDF

Background: Mucosal healing (MH) is the major therapeutic target for Crohn's disease (CD). As the most commonly involved intestinal segment, small bowel (SB) assessment is crucial for CD patients. Yet, it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!