Photodynamic therapy using ultradeformable liposomes loaded with chlorine aluminum phthalocyanine against L. (V.) braziliensis experimental models.

Exp Parasitol

Centro de Investigación en Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia.

Published: November 2018

Ultradeformable liposomes (UDLs) containing sodium cholate as edge activator could be an appropriate skin drug-delivery system for chloroaluminum phthalocyanine (ClAlPc) during photodynamic therapy (PDT) against cutaneous leishmaniasis (CL). The aim of this work was to study cell internalization, reactive oxygen species (ROS) production, and toxicity/genotoxicity and transdermal delivery of UDL-ClAlPc, and to determine whether PDT was able to induce anti-leishmanial activity in Leishmania (Viannia) braziliensis experimental models. Prepared liposomes had an average size of 118.39 nm, zeta potential of -37.83 mV, and polydispersity index of 0.15. Liposomal internalization (red fluorescence inside cells), ROS generation (green fluorescence by 2,7-dichlorodihydrofluorescein diacetate [DCFH-DA] cleavage) and non-specific DNA damage (photo-comets) were observed after PDT. Transdermal delivery of ClAlPc, measured by in vitro diffusion experiments through BALB/c skin, showed that UDL-ClAlPc was able to deliver very low quantities of ClAlPc (<1%) to deep skin layers. PDT using UDL-ClAlPc induced photodamage in mammalian cells (J774, THP-1, and NIH-3T3), promastigotes, and intracellular amastigotes without a selective response against amastigotes (selective index ≥1). Topical once-daily ClAlPc-UDL plus visible-light irradiation (20 J/cm) twice weekly for 3 weeks was ineffective against L. (V.) braziliensis-infected BALB/c mice, whereas miltefosine 30 mg/kg/day orally for 10 days healed the lesions and scars, without parasites observed on the slides. Even though UDLs preserved ClAlPc photoactivities and were able to deliver ClAlPc to dermis, they were unable to result in healing of CL-infected mice after PDT. Experiments using different CL animal models and liposomes with increased skin permeability abilities are recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2018.09.016DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
ultradeformable liposomes
8
braziliensis experimental
8
experimental models
8
transdermal delivery
8
therapy ultradeformable
4
liposomes loaded
4
loaded chlorine
4
chlorine aluminum
4
aluminum phthalocyanine
4

Similar Publications

Nevoid basal cell carcinoma syndrome (Gorlin syndrome): a case report.

J Med Case Rep

January 2025

Department of Dermatology and Venereology, Faculty of Medicine, University of Aleppo, Aleppo, Syria.

Background: Basal cell nevus syndrome, also known as Gorlin or Gorlin-Goltz syndrome, is a hereditary condition caused by mutation in the PATCHED gene. The syndrome presents with a wide range of clinical manifestations, including basal cell carcinomas, jaw cysts, and skeletal anomalies. Diagnosis is based on specific criteria, and treatment typically includes surgical removal of basal cell carcinomas.

View Article and Find Full Text PDF

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

Clinical features, diagnosis, management, and prognosis of circumscribed choroidal hemangioma.

Surv Ophthalmol

January 2025

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China. Electronic address:

Because of its benign nature and rarity, circumscribed choroidal hemangioma (CCH) often receives limited attention, leading to a high rate of misdiagnosis and a lack of standardized treatment protocols. We provide a thorough clarification of the demographics, clinical features, diagnosis, management, and prognosis of CCH. We conducted a systematic search of the PubMed, EMBASE, and Ovid databases up to December, 2023, to identify relevant studies.

View Article and Find Full Text PDF

Photosensitive Hybrid γδ-T Exosomes for Targeted Cancer Photoimmunotherapy.

ACS Nano

January 2025

Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!