Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Imaging the complete atomic structure of materials, including light elements, with minimal beam-induced damage of the sample is a long-standing challenge in electron microscopy. Annular bright-field scanning transmission electron microscopy is often used to image elements with low atomic numbers, but due to its low efficiency and high sensitivity to precise imaging parameters it comes at the price of potentially significant beam damage. In this paper, we show that electron ptychography is a powerful technique to retrieve reconstructed phase images that provide the full structure of beam-sensitive materials containing light and heavy elements. Due to its much higher efficiency, we can reduce the beam currents used down to the subpicoampere range. Electron ptychography also allows residual lens aberrations to be corrected at the postprocessing stage, which avoids the need for fine-tuning of the probe that would result in further beam damage and provides aberration-free reconstructed phase images. We have used electron ptychography to obtain structural information from aberration-free reconstructed phase images in the technologically relevant lithium-rich transition metal oxides at different states of charge. We can unambiguously determine the position of the lithium and oxygen atomic columns while amorphization of the surface, formation of beam-induced surface reconstruction layers, or migration of transition metals to the alkali layers are drastically reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b02718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!