Background: Correct development of the placenta is critical to establishing pregnancy and inadequate placentation leads to implantation failure and miscarriage, as well as later gestation pregnancy disorders. Much attention has been focused on the placental trophoblasts and it is clear that the trophoblast lineages arise from the trophectoderm of the blastocyst. In contrast, the cells of the placental mesenchyme are thought to arise from the inner cell mass, but the details of this process are limited. Due to ethical constraints and the inaccessibility of very early implantation tissues, our knowledge of early placentation has been largely based on historical histological sections. More recently, stem cell technologies have begun to shed important new light on the origins of the placental mesenchymal lineages.
Objective And Rationale: This review aims to amalgamate the older and more modern literature regarding the origins of the non-trophoblast lineages of the human placenta. We highlight ways in which rapidly developing stem cell technologies may shed new light on these crucial peri-implantation events.
Search Methods: Relevant articles were identified using the PubMed database and Google Scholar search engines. A pearl growing method was used to expand the scope of papers relevant to the cell differentiation events of non-trophoblast placental lineages.
Outcomes: At the start of pregnancy, cells of the extraembyronic mesoderm migrate to underlie the primitive trophoblast layers forming the first placental villi. The mesenchymal cells in the villus core most likely originate from the hypoblast of the embryo, but whether cells from the epiblast also contribute is yet to be determined. This is important because, following the formation of the villus core, vasculogenesis and haematopoiesis take place in the nascent placenta before it is connected to the embryonic circulation, making it likely that haematopoietic foci, placental macrophages, endothelial cells and vascular smooth muscle cells all arise in the placenta de novo. Evidence from the stem cell field indicates that these cells could directly differentiate from the extraembryonic mesoderm. However, the lineage hierarchy involved in cell fate decisions has not been well-established. Mesodermal progenitors capable of differentiating into both vascular and haematopoietic lineages can be derived from human embryonic stem cells, but the identification of such stem cells in the placenta is lacking. Future work profiling rare progenitor populations in early placentae will aid our understanding of early placentation.
Wider Implications: Understanding the origins of the cell lineages of the normal placenta will help us understand why so many pregnancies fail and address mechanisms that may salvage some of these losses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humupd/dmy030 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.
Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.
Ann Hematol
January 2025
Department of Obstetrics and Gynecology, The Helen Schneider Hospital for Women, Rabin Medical Center, Petach-Tikva, Israel.
Chronic Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), affecting the female genital tract in 25-66% of the patients. This condition, referred to as Genital GVHD is an underdiagnosed gynecologic comorbidity, that can significantly impair quality of life. We aimed to describe the prevalence and management of genital GVHD following HSCT.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan.
Intra-patient variability in immunosuppressive blood drug concentrations is a potential biomarker in managing organ transplant patients. However, the association between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in preventing graft-versus-host disease remains unknown. In this study, we analyzed the relationship between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in acute graft-versus-host disease prophylaxis in patients undergoing allogeneic hematopoietic stem cell transplantation.
View Article and Find Full Text PDFSci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!