AI Article Synopsis

  • Estrogens have neuroprotective effects in stroke models, but traditional treatments pose risks of uterine and breast cancer, making alternative approaches necessary.
  • The study evaluated the impact of a selective nonnuclear estrogen receptor stimulator, PaPE-1, on stroke recovery in ovariectomized mice, comparing its effects to estradiol (E2) and a control vehicle.
  • Results showed that both E2 and PaPE-1 reduced brain damage and improved motor function post-stroke, but only PaPE-1 did so without causing unwanted uterine effects, highlighting its potential as a safer neuroprotective treatment.

Article Abstract

Estrogens provide neuroprotection in animal models of stroke, but uterotrophic effects and cancer risk limit translation. Classic estrogen receptors (ERs) serve as transcription factors, whereas nonnuclear ERs govern numerous cell processes and exert beneficial cardiometabolic effects without uterine or breast cancer growth in mice. Here, we determined how nonnuclear ER stimulation with pathway-preferential estrogen (PaPE)-1 affects stroke outcome in mice. Ovariectomized female mice received vehicle, estradiol (E2), or PaPE-1 before and after transient middle cerebral artery occlusion (tMCAo). Lesion severity was assessed with MRI, and poststroke motor function was evaluated through 2 weeks after tMCAo. Circulating, spleen, and brain leukocyte subpopulations were quantified 3 days after tMCAo by flow cytometry, and neurogenesis and angiogenesis were evaluated histologically 2 weeks after tMCAo. Compared with vehicle, E2 and PaPE-1 reduced infarct volumes at 3 days after tMCAo, though only PaPE-1 reduced leukocyte infiltration into the ischemic brain. Unlike E2, PaPE-1 had no uterotrophic effect. Both interventions had negligible effect on long-term poststroke neuronal or vascular plasticity. All mice displayed a decline in motor performance at 2 days after tMCAo, and vehicle-treated mice did not improve thereafter. In contrast, E2 and PaPE-1 treatment afforded functional recovery at 6 days after tMCAo and beyond. Thus, the selective activation of nonnuclear ER by PaPE-1 decreased stroke severity and improved functional recovery in mice without undesirable uterotrophic effects. The beneficial effects of PaPE-1 are also associated with attenuated neuroinflammation in the brain. PaPE-1 and similar molecules may warrant consideration as efficacious ER modulators providing neuroprotection without detrimental effects on the uterus or cancer risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203892PMC
http://dx.doi.org/10.1210/en.2018-00600DOI Listing

Publication Analysis

Top Keywords

days tmcao
16
functional recovery
12
pape-1
9
stroke severity
8
female mice
8
uterotrophic effects
8
cancer risk
8
weeks tmcao
8
pape-1 reduced
8
brain pape-1
8

Similar Publications

The acute phase of ischemic stroke is marked by a surge in matrix metalloproteinase-9 (MMP-9) activity. While integral to natural repair processes, MMP-9 exacerbates injury by breaking down the blood-brain barrier (BBB) and promoting edema and inflammation. MMP-9 is predominantly secreted by inflammatory cells such as neutrophils, macrophages and microglia soon after stroke onset.

View Article and Find Full Text PDF

Background: The optimal method for addressing cerebral ischemic stroke involves promptly restoring blood supply. However, cerebral ischemia-reperfusion injury (CIRI) is an unavoidable consequence of this event. Neuroinflammation is deemed the primary mechanism of CIRI, with various activation phenotypes of microglia playing a pivotal role.

View Article and Find Full Text PDF

Neuroprotective Efficacy of in Ischemic Stroke: Antioxidant and Anti-Inflammatory Mechanisms.

Cells

January 2025

Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea.

Stroke affects over 12 million people annually, leading to high mortality, long-term disability, and substantial healthcare costs. Although East Asian herbal medicines are widely used for stroke treatment, the pathways of operation they use remain poorly understood. Our study investigates the neuroprotective properties of (AM) in acute ischemic stroke using photothrombotic (PTB) and transient middle cerebral artery occlusion (tMCAO) mouse models, as well as an oxygen-glucose deprivation (OGD) model.

View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Background: Monocyte-derived macrophages and microglia initially adopt an anti-inflammatory phenotype following stroke but later transition to a pro-inflammatory state. The mechanisms underlying this phenotypic shift remain unclear. This study investigates the activation dynamics of molecular signaling pathways in macrophages and microglia after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!