To study the thermodynamics properties of the solar atmosphere with different height distribution, the imaging grating spectrometer with excellent image quality is one of the important tools to achieve this goal. However, the atmosphere turbulence can not be avoided for the imaging grating spectrometer installed in the ground-based solar telescope, and the imaging properties of the grating spectrometer will influenced by the wavefront aberration generalized by the atmosphere turbulence and the wavefront aberration generalized by the optical system adjusting errors and the optical element manufacturing errors. The atmospheric turbulence can be effectively compensated by the Adaptive Optics. To correct the wavefront aberrations of the optical system, a correction method based on Adaptive Optics is proposed, and the experiment validation is carried out to verify the feasibility of the method. The results demonstrate that the correction method proposed can effectively correct the wavefront aberration generalized by the atmosphere turbulence and the optical system aberration. The RMS value is roughly equal to 0.025λ after the Adaptive Optics correction. Besides, it has the virtue of lower the requirement of optical system adjusting errors and optical elements manufacturing errors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

grating spectrometer
16
optical system
16
atmosphere turbulence
12
wavefront aberration
12
aberration generalized
12
adaptive optics
12
based adaptive
8
imaging grating
8
generalized atmosphere
8
system adjusting
8

Similar Publications

The Heisenberg-RIXS instrument at the European XFEL.

J Synchrotron Radiat

January 2025

Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations.

View Article and Find Full Text PDF

Development and Field Deployment of a ppb-Level SO/NO Dual-Gas Sensor System for Agricultural Early Fire Identification.

ACS Sens

December 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

Sulfur dioxide (SO) and nitrogen dioxide (NO) are chemical indicators of crop straw combustion as well as significant atmospheric pollutants. It is challenging to promptly detect natural "wildfires" during agricultural production, which often lead to uncontrollable and substantial economic losses. Moreover, both "wildfires" and artificial "straw burning" practices pose severe threats to the ecological environment and human health.

View Article and Find Full Text PDF

The present study proposes and demonstrates a narrow-linewidth thulium-holmium co-doped fiber laser based on self-injection locking. The laser with single-longitudinal-mode operation is realized using a fiber Bragg grating as a wavelength-selection component and a dual-ring compound cavity as a mode-selection filter. The linewidth was compressed by increasing the photon lifetime by utilizing delay fibers of different lengths in the feedback cavity.

View Article and Find Full Text PDF

The unique diffractive properties of gratings have made them essential in a wide range of applications, including spectral analysis, precision measurement, optical data storage, laser technology, and biomedical imaging. With advancements in micro- and nanotechnologies, the demand for more precise and efficient grating fabrication has increased. This review discusses the latest advancements in grating manufacturing techniques, particularly highlighting laser interference lithography, which excels in sub-beam generation through wavefront and amplitude division.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!