Dysregulation of trophoblast differentiation is implicated in the placental pathologies of intrauterine growth restriction and pre-eclampsia. P-glycoprotein (P-gp encoded by ABCB1) is an ATP-binding cassette transporter present in the syncytiotrophoblast layer of the placenta where it acts as a molecular sieve. In this study, we show that P-gp is also expressed in the proliferating cytotrophoblast (CT), the syncytiotrophoblast (ST) and the extravillous trophoblast (EVT), suggesting our hypothesis of a functional role for P-gp in placental development. Silencing of ABCB1, via siRNA duplex, results in dramatically reduced invasion and migration, and increased tube formation and fusion in the EVT-like HTR8/SV cell line. In both EVT and CT explant differentiation experiments, silencing of ABCB1 leads to induction of the fusion markers human hCG, ERVW-1 and GJA1 and terminal differentiation of both trophoblast subtypes. Moreover, P-gp protein levels are decreased in both the villous and the EVT of severe early-onset pre-eclamptic placentas. We conclude that, in addition to its role as a syncytial transporter, P-gp is a key factor in the maintenance of both CT and EVT lineages and that its decrease in severe pre-eclampsia may contribute to the syncytial and EVT placental pathologies associated with this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201374 | PMC |
http://dx.doi.org/10.1111/jcmm.13810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!