Although pathologic lesions in the pancreas are 3-dimensional (3D) complex structures, we currently use thin 2D hematoxylin and eosin stained slides to study and diagnose pancreatic pathology. Two technologies, tissue clearing and advanced microscopy, have recently converged, and when used together they open the remarkable world of 3D anatomy and pathology to pathologists. Advances in tissue clearing and antibody penetration now make even dense fibrotic tissues amenable to clearing, and light sheet and confocal microscopies allow labeled cells deep within these cleared tissues to be visualized. Clearing techniques can be categorized as solvent-based or aqueous-based techniques, but both clearing methods consist of 4 fundamental steps, including pretreatment of specimens, permeabilization and/or removal of lipid, immunolabeling with antibody penetration, and clearing by refractive index matching. Specialized microscopes, including the light sheet microscope, the 2-photon microscope, and the confocal microscope, can then be used to visualize and evaluate the 3D histology. Both endocrine and exocrine pancreas pathology can then be visualized. The application of labeling and clearing to surgically resected human pancreatic parenchyma can provide detailed visualization of the complexities of normal pancreatic anatomy. It also can be used to characterize the 3D architecture of disease processes ranging from precursor lesions, such as pancreatic intraepithelial neoplasia lesions and intraductal papillary mucinous neoplasms, to infiltrating pancreatic ductal adenocarcinomas. The evaluation of 3D histopathology, including pathology of the pancreatic lesions, will provide new insights into lesions that previously were seen, and thought of, only in 2 dimensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PAP.0000000000000215 | DOI Listing |
J Orthop Surg Res
January 2025
Center of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Background: Delta large-channel endoscopy and unilateral biportal endoscopy (UBE) are prominent minimally invasive techniques for treating lumbar spinal stenosis, known for minimal tissue damage, clear visualization, and quick recovery. However, rigorous controlled research comparing these procedures is scarce, necessitating further investigation into their respective complications and long-term effectiveness. This randomized controlled trial aims to compare their perioperative outcomes, focusing on postoperative recovery and complications over time.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:
We have identified FLT1 as a protein that changes during Alzheimer's disease (AD) whereby higher brain protein levels are associated with more amyloid, more tau, and faster longitudinal cognitive decline. Given FLT1's role in angiogenesis and immune activation, we hypothesized that FLT1 is upregulated in response to amyloid pathology, driving a vascular-immune cascade resulting in neurodegeneration and cognitive decline. We sought to determine (1) if in vivo FLT1 levels (CSF and plasma) associate with biomarkers of AD neuropathology or differ between diagnostic staging in an aged cohort enriched for early disease, and (2) whether FLT1 expression interacts with amyloid on downstream outcomes, such as phosphorylated tau levels and cognitive performance.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, Italy.
MALDI-HiPLEX-IHC mass spectrometry imaging (MSI) represents a newly established workflow to map tens of antibodies linked to photocleavable mass tags (PC-MTs), which report the distribution of antigens in formalin-fixed paraffin-embedded (FFPE) tissue sections. While this highly multiplexed approach has previously been integrated with untargeted methods, the possibility of mapping target cell antigens and performing bottom-up spatial proteomics on the same tissue section has yet to be explored. This proof-of-concept study presents a novel workflow combining MALDI-HiPLEX-IHC with untargeted spatial proteomics to analyze a single FFPE tissue section, using clinical clear cell renal cell carcinoma (ccRCC) tissue as a model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!