Objectives: Spiral ganglion (SG) counting is used in experimental studies conducted on age-, noise-, and drug-induced sensorineural hearing loss, as well as in the assessment of cochlear implant performances. Different methods of counting have been reported, but no definite standardization of such procedure has been published. The aim of our study is to identify the best method to count human spiral ganglions (SGs).

Materials And Methods: By identification of nuclei or nucleoli as described by Schucknect, seven researchers with different experience levels counted SGs in 123 human temporal bones (TBs). Data on time of post-mortem bone removal post-mortem, methods of specimen's fixation, decalcification, and coloration were collected to test their possible influence on human tissue. Percentage, two-tailed t-test, Spearman's test, and one-way ANOVA were used to analyze the data.

Results: Nucleoli were identified in 61% of cases, whereas nuclei were recognized in 100% of cases (p<0.005). Nucleoli presence in all four segments in the same temporal bone (TB) was observed in 69 cases (92%), whereas nuclei were identified in all four segments in 103 cases (83.7%) (p<0.001). The junior investigators requested a double check by the seniors in 25 (20.3%) cases for identifying and counting nucleoli, whereas the senior researchers showed no doubts in their identification and count. The only parameter positively affecting nucleoli identification in tissue preparation was bone removal for <12 h with respect to longer post-mortem time (p<0.001).

Conclusion: We suggest counting nuclei, rather than nucleoli, for spiral ganglion computation because of easier recognition of nuclei, especially in case of investigator's limited experience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354471PMC
http://dx.doi.org/10.5152/iao.2018.5517DOI Listing

Publication Analysis

Top Keywords

spiral ganglion
8
human temporal
8
nucleolus nucleus
4
nucleus count
4
count identifying
4
identifying spiral
4
human
4
ganglion human
4
temporal bone
4
bone objectives
4

Similar Publications

Purpose: Variations in neural survival along the cochlear implant electrode array leads to off-place listening, resulting in poorer speech understanding outcomes for recipients. Therefore, it is important to develop and compare clinically viable tests to identify these patient-specific intra-cochlear neural differences.

Methods: Nineteen experienced cochlear implant recipients (9 males and 10 females) were recruited for this study.

View Article and Find Full Text PDF

Investigating the expression profiles of cysteine string proteins (CSPs) in cochlear tissue.

J Otol

October 2024

The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.

Objective: This study aims to explore the expression patterns of cysteine string protein alpha (CSPα) and cysteine string protein beta (CSPβ) in the mammalian inner ear, with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.

Methods: We utilized immunofluorescence staining to assess the localization and distribution of CSPα and CSPβ within the inner ears of C57BL/6 mice and miniature pigs. Additionally, this method facilitated the investigation of their temporal expression profiles.

View Article and Find Full Text PDF

Hearing loss (HL) is the most common disorder in newborns with a highly heterogeneous genetic background. Despite significant progress in screening and identifying genes related to congenital hearing loss, there are still candidate genes implicated in HL that remain undiscovered. We investigated HL in 43 Chinese families by segregating bilateral sensorineural HL via whole-exome sequencing (WES) and Sanger sequencing.

View Article and Find Full Text PDF

Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.

View Article and Find Full Text PDF

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!