Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3102
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3104
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3104
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current methods of scoring histological kidney samples, specifically glomeruli, do not allow for collection of quantitative data in a high-throughput and consistent manner. Neither untrained individuals nor computers are presently capable of identifying glomerular features, so expert pathologists must do the identification and score using a categorical matrix, complicating statistical analysis. Critical information regarding overall health and physiology is encoded in these samples. Rapid comprehensive histological scoring could be used, in combination with other physiological measures, to significantly advance renal research. Therefore, we used machine learning to develop a high-throughput method to automatically identify and collect quantitative data from glomeruli. Our method requires minimal human interaction between steps and provides quantifiable data independent of user bias. The method uses free existing software and is usable without extensive image analysis training. Validation of the classifier and feature scores in mice is highlighted in this work and shows the power of applying this method in murine research. Preliminary results indicate that the method can be applied to data sets from different species after training on relevant data, allowing for fast glomerular identification and quantitative measurements of glomerular features. Validation of the classifier and feature scores are highlighted in this work and show the power of applying this method. The resulting data are free from user bias. Continuous data, such that statistical analysis can be performed, allows for more precise and comprehensive interrogation of samples. These data can then be combined with other physiological data to broaden our overall understanding of renal function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336999 | PMC |
http://dx.doi.org/10.1152/ajprenal.00629.2017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!