A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3102
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3104

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3104
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic glomerular identification and quantification of histological phenotypes using image analysis and machine learning. | LitMetric

Current methods of scoring histological kidney samples, specifically glomeruli, do not allow for collection of quantitative data in a high-throughput and consistent manner. Neither untrained individuals nor computers are presently capable of identifying glomerular features, so expert pathologists must do the identification and score using a categorical matrix, complicating statistical analysis. Critical information regarding overall health and physiology is encoded in these samples. Rapid comprehensive histological scoring could be used, in combination with other physiological measures, to significantly advance renal research. Therefore, we used machine learning to develop a high-throughput method to automatically identify and collect quantitative data from glomeruli. Our method requires minimal human interaction between steps and provides quantifiable data independent of user bias. The method uses free existing software and is usable without extensive image analysis training. Validation of the classifier and feature scores in mice is highlighted in this work and shows the power of applying this method in murine research. Preliminary results indicate that the method can be applied to data sets from different species after training on relevant data, allowing for fast glomerular identification and quantitative measurements of glomerular features. Validation of the classifier and feature scores are highlighted in this work and show the power of applying this method. The resulting data are free from user bias. Continuous data, such that statistical analysis can be performed, allows for more precise and comprehensive interrogation of samples. These data can then be combined with other physiological data to broaden our overall understanding of renal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336999PMC
http://dx.doi.org/10.1152/ajprenal.00629.2017DOI Listing

Publication Analysis

Top Keywords

data
9
glomerular identification
8
image analysis
8
machine learning
8
quantitative data
8
glomerular features
8
statistical analysis
8
user bias
8
validation classifier
8
classifier feature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!