Clonal evolution through genetic bottlenecks and telomere attrition: Potential threats to in vitro data reproducibility.

Genes Chromosomes Cancer

Cell Biology, Research Institute of Oncology and Hematology, The Genomic Centre for Cancer Research and Diagnosis, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.

Published: July 2019

Tissue cultures of immortalized human cells, also known as established cell lines, are broadly accessible and cost-efficient tools for biomedical research. We here review potential genetic sources of systematic error in cell line experiments due to clonal evolution in vitro. In particular, the authors highlight alterations in telomere function over prolonged culture and population bottlenecks, respectively, as two commonly overlooked phenomena that can result in significant alterations in cell line genotypes over just one or a few passages in vitro. These alterations may include changes in mutation status of oncogenes and large scale chromosomal imbalances. We introduce a simple list of factors to be avoided in order to reduce the risk of data misinterpretation due to clonal evolution, including unacknowledged in vitro selection pressures, prolonged culture per se, harsh population size reductions, experiments at early phases after establishment, and the employment of cell lines not sufficiently analyzed by high resolution genetic techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22685DOI Listing

Publication Analysis

Top Keywords

clonal evolution
12
cell lines
8
prolonged culture
8
evolution genetic
4
genetic bottlenecks
4
bottlenecks telomere
4
telomere attrition
4
attrition potential
4
potential threats
4
vitro
4

Similar Publications

Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.

View Article and Find Full Text PDF

Genetic evidence for the causal effect of clonal hematopoiesis on pulmonary arterial hypertension.

BMC Cardiovasc Disord

January 2025

Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China.

Background: Pulmonary arterial hypertension (PAH) is a severe and progressive cardiovascular disease. While potential links between clonal hematopoiesis (CH) and cardiovascular diseases have been identified, the causal relationship between CH and PAH remains unclear. This study aims to investigate the causal effect of CH on the risk of PAH using a two-sample Mendelian randomization (MR) approach.

View Article and Find Full Text PDF

Long-term dynamics of placozoan culture: emerging models for population and space biology.

Front Cell Dev Biol

January 2025

Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.

As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.

View Article and Find Full Text PDF

Aim: Both clonal hematopoiesis of indeterminate potential (CHIP) and type 2 diabetes mellitus (T2DM) are conditions closely associated with advancing age. This study delves into the possible implications and prognostic significance of CHIP and T2DM in patients diagnosed with ST-segment elevation myocardial infarction (STEMI).

Methods: Deep-targeted sequencing employing a unique molecular identifier (UMI) for the analysis of 42 CHIP mutations-achieving an impressive mean depth of coverage at 1000 × -was conducted on a cohort of 1430 patients diagnosed with acute myocardial infarction (473 patients with T2DM and 930 non-DM subjects).

View Article and Find Full Text PDF

The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!