AI Article Synopsis

  • The study examines the distinct roles of the dorsal (dPCC) and ventral (vPCC) subregions of the posterior cingulate cortex (PCC) in regulating cognitive tasks and emotional responses.
  • Using functional MRI, researchers found that while both PCC subregions are connected during resting states and cognitive tasks, they decouple during affective tasks, indicating different network assignments for each region.
  • The findings suggest that future studies should analyze dPCC and vPCC separately, as their connectivity patterns vary significantly based on task demands, highlighting the importance of understanding their roles in broader cognitive networks.

Article Abstract

The posterior cingulate cortex (PCC) is often used as a seed region for probing default-mode network (DMN) connectivity. However, there is evidence for a functional segregation between its dorsal (dPCC) and ventral (vPCC) subregions, which suggests differential involvements of d-/vPCC in regulating cognitive demands. Our paradigm included functional magnetic resonance imaging measures for baseline resting state, affective or cognitive tasks, and post-task resting states. We investigated the effect of task demands on intra-PCC coupling and d-/vPCC network assignment to major intrinsic connectivity networks (ICNs), which was estimated via edge weights of a graph network encompassing DMN, dorsal-attention network, and central-executive network (CEN). Although PCC subregions were functionally coupled during both resting-state conditions and cognitive tasks, they decoupled during affective stimulation. For dPCC, functional connectivity strength (FCS) to CEN was higher than to the other two ICNs; whereas for vPCC, FCS to DMN was the highest. We, hence, defined CEN and DMN as the canonical networks at rest for dPCC and vPCC, respectively. Switching from rest to affective stimulation, however, induced the strongest effects to relative network assignments between non-canonical networks of dPCC and vPCC. Although vPCC showed a durable functional connectivity (FC) to DMN, dPCC played a crucial role during switches of between-network FC depending on cognitive versus affective task requirements. Our results underline that it is crucial for future seed-based FC studies to consider these two subregions separately in terms of seed location and discussion of findings. Finally, our findings highlight the functional importance of connectivity changes toward regions outside the canonical networks.

Download full-text PDF

Source
http://dx.doi.org/10.1089/brain.2018.0602DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
posterior cingulate
8
cingulate cortex
8
network assignment
8
connectivity strength
8
cognitive tasks
8
affective stimulation
8
canonical networks
8
dpcc vpcc
8
network
7

Similar Publications

Multilayer network analysis in patients with end-stage kidney disease.

Sci Rep

December 2024

Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.

This study aimed to investigate alterations in a multilayer network combining structural and functional layers in patients with end-stage kidney disease (ESKD) compared with healthy controls. In all, 38 ESKD patients and 43 healthy participants were prospectively enrolled. They exhibited normal brain magnetic resonance imaging (MRI) without any structural lesions.

View Article and Find Full Text PDF

Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy.

View Article and Find Full Text PDF

An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training.

NPJ Sci Learn

December 2024

Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.

Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI.

View Article and Find Full Text PDF

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Decoding states of consciousness from brain activity is a central challenge in neuroscience. Dynamic functional connectivity (dFC) allows the study of short-term temporal changes in functional connectivity (FC) between distributed brain areas. By clustering dFC matrices from resting-state fMRI, we previously described "brain patterns" that underlie different functional configurations of the brain at rest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!