Due to the increasing incidents of antimicrobial-resistant pathogens, the development of new antibiotics and their efficient formulation for suitable administration is crucial. Currently, one group of promising antimicrobial compounds are the benzophenone tetra-amides which show good activity even against gram-positive, drug-resistant pathogens. These compounds suffer from poor water solubility and bioavailability. It is therefore important to develop dosage forms which can address this disadvantage while also maintaining efficacy and potentially generating long-term exposures to minimize frequent dosing. Biodegradable nanoparticles provide one solution, and we describe here the encapsulation of the experimental benzophenone-based antibiotic, SV7. Poly-lactic-co-glycolic-acid (PLGA) nanoparticles were optimized for their physicochemical properties, their encapsulation efficiency, sustained drug release as well as antimicrobial activity. The optimized formulation contained particles smaller than 200 nm with a slightly negative zeta potential which released 39% of their drug load over 30 days. This formulation maintains the antibacterial activity of SV7 while minimizing the impact on mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-018-1187-9 | DOI Listing |
Cancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFJ Food Sci
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.
View Article and Find Full Text PDFGels
December 2024
State Key Laboratory of Digital Medical Engineering, Basic Medicine Research and Innovation Center of Ministry of Education, Southeast University, Nanjing 211102, China.
Tumor whole-cell vaccines are designed to introduce a wide range of tumor-associated antigens into the body to counteract the immunosuppression caused by tumors. In cases of lymphoma of which the specific antigen is not yet determined, the tumor whole-cell vaccine offers distinct advantages. However, there is still a lack of research on an effective preparation method for the lymphoma whole-cell vaccine.
View Article and Find Full Text PDFJ Control Release
December 2024
D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia. Electronic address:
Poly(lactide-co-glycolide) (PLG) nanoparticles loaded with doxorubicin have reached phase-I clinical trials for treating advanced solid tumors. This study explores cell hitchhiking, where nanoparticles associate with blood cells and investigates the impact on pharmacokinetics and tumor migration. Previous findings highlighted the early post-injection phase dominated by nonspecific nanoparticle-cell interactions and burst release.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China.
Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic--glycolic acid) (PLGA) nanoparticles (NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!