Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions.

Environ Sci Pollut Res Int

College of Agronomy, Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Published: November 2018

In semiarid regions, deficit and unpredictable precipitation results in yield losses. Uniconazole is a plant growth regulator and its application is beneficial in water saving agriculture and improves maize production in semiarid regions. In order to determine the effects of uniconazole application on seed filling and hormonal changes of maize, a field study was conducted in the summer of 2015 and 2016. Seeds were soaked in uniconazole at concentration of 0 (SCK), 25 (S), 50 (S), and 75 (S) mg kg, while in the second experiment, uniconazole was applied to the foliage at concentration of 0 (FCK), 25 (F), 50 (F), and 75 (F) mg L at the eight-leaf. Uniconazole application significantly improves the seed filling rates by regulating the endogenous hormones contents. Uniconazole seed soaking treatments improved significantly the seed filling rate of superior, middle, and inferior seeds compared with foliar application treatments. Uniconazole improved significantly the zeatin (Z) + zeatin riboside (ZR) and abscisic acid (ABA) contents while reducing the gibberellic acid (GA) content in the seeds during the process of seed filling. The Z + ZR and ABA contents were significantly positively correlated while the GA content was negatively correlated with maximum seed weight, maximum seed filling rates, and mean seed filling rates. Treatments S and F significantly improved the above dry matter accumulation plant, seed filling rates, ABA, Z + ZR contents, characters of ear, and grain yield while reduced the GA content. It is concluded from our results that the uniconazole application at concentration of 25 mg kg as seed soaking or 25 mg L foliar applied at the eight-leaf stage is beneficial to improve the seed filling rates and grain yield of maize in semiarid regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3235-0DOI Listing

Publication Analysis

Top Keywords

seed filling
36
filling rates
20
semiarid regions
16
seed
12
uniconazole application
12
aba contents
12
uniconazole
9
filling
8
seed soaking
8
treatments improved
8

Similar Publications

Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.

Front Plant Sci

December 2024

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.

In common bean ( L.), leaf photosynthesis is significantly reduced under drought conditions. Previous studies have shown that some drought-tolerant cultivars use the pod walls to compensate the decreased photosynthesis rate in leaves by acting as temporary reservoirs of carbohydrates to support seed filling.

View Article and Find Full Text PDF

Managed honeybees and soil nitrogen availability interactively modulate sunflower production in intensive agricultural landscapes of China.

J Econ Entomol

December 2024

Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China.

Insects provide important pollination services for cops. While land use intensification has resulted in steep declines of wild pollinator diversity across agricultural landscapes, releasing managed honeybees has been proposed as a countermeasure. However, it remains uncertain whether managed honeybees can close the pollination gap of sunflower (Helianthus annuus L.

View Article and Find Full Text PDF

Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.

View Article and Find Full Text PDF

We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.

View Article and Find Full Text PDF

A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation-mediated auxin biosynthesis signalling pathway in rice.

Plant Biotechnol J

December 2024

State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China-IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!