Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The imaging evaluation of cystic fibrosis currently relies on chest radiography or computed tomography. Recently, digital chest tomosynthesis has been proposed as an alternative. We have developed a stationary digital chest tomosynthesis (s-DCT) system based on a carbon nanotube (CNT) linear x-ray source array. This system enables tomographic imaging without movement of the x-ray tube and allows for physiological gating. The goal of this study was to evaluate the feasibility of clinical CF imaging with the s-DCT system.
Materials And Methods: CF patients undergoing clinically indicated chest radiography were recruited for the study and imaged on the s-DCT system. Three board-certified radiologists reviewed both the CXR and s-DCT images for image quality relevant to CF. CF disease severity was assessed by Brasfield score on CXR and chest tomosynthesis score on s-DCT. Disease severity measures were also evaluated against subject pulmonary function tests.
Results: Fourteen patients underwent s-DCT imaging within 72 h of their chest radiograph imaging. Readers scored the visualization of proximal bronchi, small airways and vascular pattern higher on s-DCT than CXR. Correlation between the averaged Brasfield score and averaged tomosynthesis disease severity score for CF was -0.73, p = 0.0033. The CF disease severity score system for tomosynthesis had high correlation with FEV1 (r = -0.685) and FEF 25-75% (r = -0.719) as well as good correlation with FVC (r = -0.582).
Conclusion: We demonstrate the potential of CNT x-ray-based s-DCT for use in the evaluation of cystic fibrosis disease status in the first clinical study of s-DCT.
Key Points: • Carbon nanotube-based linear array x-ray tomosynthesis systems have the potential to provide diagnostically relevant information for patients with cystic fibrosis without the need for a moving gantry. • Despite the short angular span in this prototype system, lung features such as the proximal bronchi, small airways and pulmonary vasculature have improved visualization on s-DCT compared with CXR. Further improvements are anticipated with longer linear x-ray array tubes. • Evaluation of disease severity in CF patients is possible with s-DCT, yielding improved visualization of important lung features and high correlation with pulmonary function tests at a relatively low dose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896210 | PMC |
http://dx.doi.org/10.1007/s00330-018-5703-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!