The aim of this study was to analyze the general, geometric, and kinematic characteristics of the masticatory cycle's movements in a tridimensional way, using a method developed by our study group to provide a new insight into the analysis of mandibular movements due to advancement in the potential of computational analysis. Ten individuals (20.1 ± 2.69 years), molar class I, without mandibular movement problems participated in this study. The movements of the masticatory cycles, frontal and sagittal mandibular border movements, were recorded using 3D electromagnetic articulography and processed with computational scripts developed by our research group. The number of chewing cycles, frequency (cycles/s), chewing cycle areas/mandibular border movements areas ratios, and the mouth opening and closing speeds on the 3D trajectory of the chewing cycle were compared. The cycles were divided and analyzed in thirds. The masticatory cycles showed high variation among the individuals (21.6 ± 9.4 cycles); the frequency (1.46 ± 0.21 cycles/s) revealed a moderate positive correlation (R = 0.52) with the number of cycles. The frontal area ratios between the cycle area and the mandibular border movement presented higher values in the first third (6.65%) of the masticatory cycles, and the ratios of sagittal areas were higher and more variable (first, 7.67%; second, 8.06%; and third, 10.04%) than the frontal view. The opening and closing mouth speeds were greater in the second third of the masticatory cycles (OS, 57.82 mm/s; CS, 58.34 mm/s) without a significant difference between the opening and closing movements when the same thirds were evaluated. Further studies are necessary to improve the understanding of the masticatory cycles regarding the standardization of parameters and their values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140131PMC
http://dx.doi.org/10.1155/2018/2527463DOI Listing

Publication Analysis

Top Keywords

masticatory cycles
24
opening closing
12
cycles
10
geometric kinematic
8
kinematic characteristics
8
characteristics masticatory
8
cycles frontal
8
mandibular border
8
border movements
8
cycles frequency
8

Similar Publications

Load-bearing capacity of screw-retained fixed dental prostheses made of monolithic zirconia on different abutment designs and abutment-free implant connection.

J Dent

January 2025

Senior Research and Teaching Assistant, Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich 8032, Switzerland. Electronic address:

Objectives: A new abutment-free implant connection allows for direct screwing of FDPs on implants to avoid complications caused by cement rests or screw loosening, which may affect to screw torque and load distribution. The objective of this study was to test the initial (Fi) and final failure (Ff) loads and torque changes of abutment-free monolithic zirconia CAD-CAM fixed dental prostheses (FDPs) compared to titanium FDPs on different abutment designs.

Methods: Three-unit screw-retained FDPs (n = 50) on two implants (n = 100) were divided into groups (n = 10) based on the implant-abutment connection and material of the supra-structure: (1) abutment-free monolithic CAD-CAM zirconia FDP (Abut-free-Zr), (2) abutment-free veneered titanium FDPs (Abut-free-Ti), (3) monolithic zirconia FDPs with titanium base abutments (Zr-Ti-Base), (4) monolithic zirconia FDPs on multi-unit abutments (Zr-MU), (5) veneered titanium FDP on multi-unit abutments (Ti-MU).

View Article and Find Full Text PDF

Biofilm attachment and mineralizing potential of contemporary restorative materials.

Am J Dent

December 2024

Department of Restorative Sciences, Division of Operative Dentistry and Biomaterials, University of North Carolina, Adams School of Dentistry, Chapel Hill, North Carolina, USA,

Purpose: To evaluate and compare: (1) the effect of the bacterial biofilm on the dentin mineral density at the restoration-tooth interface and (2) the mineralization potential of three resin-based restorative materials (RBRM).

Methods: 16 extracted human molars free of caries and cracks were collected and stored for disinfection. Each tooth received two standardized Class II preparations with the cervical margin placed in dentin.

View Article and Find Full Text PDF

Objectives: This in vitro study aimed to investigate the toothbrushing wear on both enamel and dentin surfaces of reference and commercially available dentifrices.

Methods: Bovine enamel and dentin blocks were initially polished and embedded within a resin composite in square shapes (10×8×6 mm3). Employing toothbrushes equipped with nylon bristles, a toothbrushing machine was utilized, subjecting dentin specimens (n = 36) to 500 brush cycles and enamel samples to 5000 brush cycles (n = 36).

View Article and Find Full Text PDF

Aim: The brief report aims to evaluate masticatory performance and components of chewing behavior in people with anorexia nervosa and compare it with a reference group of individuals with no history of eating disorders.

Material And Methods: Eighteen women participated in the study: nine with anorexia nervosa (age 20.2 ± 5.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how oropharyngeal structures like the soft palate, tongue base, and epiglottis change position and coordination during normal functions like breathing and chewing.
  • Using X-ray fluoroscopy with Yucatan minipigs, researchers digitized and analyzed movements to understand the dynamics of these structures.
  • Findings revealed significant differences in movement magnitudes during respiration and chewing, suggesting that each structure has a unique role which may help in understanding disorders like dysphagia and sleep apnea.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!