Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141631 | PMC |
http://dx.doi.org/10.3389/fcvm.2018.00127 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.
View Article and Find Full Text PDFLife (Basel)
December 2024
Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 4000 Plovdiv, Bulgaria.
Background: Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, 11 000 Belgrade, Serbia.
Cirrhotic cardiomyopathy (CCM) is a diagnostic entity defined as cardiac dysfunction (diastolic and/or systolic) in patients with liver cirrhosis, in the absence of overt cardiac disorder. Pathogenically, CCM stems from a combination of systemic and local hepatic factors that, through hemodynamic and neurohormonal changes, affect the balance of cardiac function and lead to its remodeling. Vascular changes in cirrhosis, mostly driven by portal hypertension, splanchnic vasodilatation, and increased cardiac output alongside maladaptively upregulated feedback systems, lead to fluid accumulation, venostasis, and cardiac dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!