The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra--butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO-5CB was lowered compared with the TiO-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO composite plays an important role in its photocatalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141621PMC
http://dx.doi.org/10.3389/fchem.2018.00370DOI Listing

Publication Analysis

Top Keywords

magnetic field
32
1-d-like tio
16
liquid crystal
12
photocatalytic activity
12
tio composite
12
magnetic
8
synthesized magnetic
8
field
8
1-d-like
8
crystal structure-aligning
8

Similar Publications

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.

View Article and Find Full Text PDF

Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.

View Article and Find Full Text PDF

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

Integration of Asymmetric Multi-Path Hollow Structure and Multiple Heterogeneous Interfaces in FeO@C@NiO Nanoprisms Enabling Ultra-Low and Broadband Absorption.

Small

January 2025

Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.

A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.

View Article and Find Full Text PDF

Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!