Purpose: Exosomes are small 30-100 nm vesicles secreted by various cell types. They are released by most cell types, indicating their important role in physiological and pathological processes, including signaling pathways, cell-to-cell communication, tumor progression, and molecule transferring. As natural nanovesicles, exosomes can be a good candidate for drug delivery due to low immunogenicity and ability to enter tissues and even cross the blood-brain barrier. In an effort to improve the efficiency of exosomes for targeted drug delivery with minimal effect on normal cells, we expressed ligands against HER2+ cells.
Methods: To purify exosomes, transduced mesenchymal stromal cells were cultured to reach 80% confluency. Next, the cells were cultured in serum-free media for 48 hours and the supernatant was harvested to purify exosomes. These exosomes were then labeled with PKH67 and added to BT-474, SKBR3 (HER2+), and MDA-MB231 (HER2-), cell lines and their binding to HER2+ was evaluated by flow cytometry. Exosomes were loaded with doxorubicin and quantified using intrinsic fluorescence of doxorubicin at 594 nm.
Results: Targeted exosomes were preferably uptaken by HER2+ cells. Therefore, untargeted exosomes showed lower binding to HER2+ cells compared to their targeted counterparts. MTT assay was performed to analyze cytotoxic effect of exo-DOX (exosome encapsulated with doxorubicin). Efficiency of exo-DOX and free DOX (doxorubicin) delivery with different concentrations, to the BT-474 cell line, was compared, and no significant difference was observed.
Conclusion: Our results imply that targeted exosomes are preferentially uptaken by HER2+ cells relative to HER2- cells and have the potential to be used as an efficient drug delivery system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140699 | PMC |
http://dx.doi.org/10.2147/OTT.S173110 | DOI Listing |
Med Oncol
January 2025
Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India.
Liver cancer is one of the most challenging malignancies, often associated with poor prognosis and limited treatment options. Recent advancements in nanotechnology and artificial intelligence (AI) have opened new frontiers in the fight against this disease. Nanotechnology enables precise, targeted drug delivery, enhancing the efficacy of therapeutics while minimizing off-target effects.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
Lipidated analogues of glucagon-like peptide 1 (GLP-1) have gained enormous attention as long-acting peptide therapeutics for type 2 diabetes and also antiobesity treatment. Commercially available therapeutic lipidated GLP-1 analogues, semaglutide and liraglutide, have the great advantage of prolonged half-lives of hours and days instead of minutes as is the case for native GLP-1. A crucial factor in the development of novel lipidated therapeutic peptides is their physical stability, which greatly influences manufacturing and drug product development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt 64287, Germany.
In recent years, rationally designed macrocycles have emerged as promising therapeutic modalities for challenging drug targets. Macrocycles can improve affinity, selectivity, and pharmacokinetic (PK) parameters, possibly via providing semirigid, preorganized scaffolds. Nevertheless, how macrocyclization affects PK-relevant properties is still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!