Patients with pancreatic neuroendocrine tumors (PNET) commonly develop advanced disease and require systemic therapy. However, treatment options remain limited, in part, because experimental models that reliably emulate PNET disease are lacking. We therefore developed a patient-derived xenograft model of PNET (PDX-PNET), which we then used to evaluate two mTOR inhibitor drugs: FDA-approved everolimus and the investigational new drug sapanisertib. PDX-PNETs maintained a PNET morphology and PNET-specific gene expression signature with serial passage. PDX-PNETs also harbored mutations in genes previously associated with PNETs (such as and ), displayed activation of the mTOR pathway, and could be detected by Gallium-68 DOTATATE PET-CT. Treatment of PDX-PNETs with either everolimus or sapanisertib strongly inhibited growth. As seen in patients, some PDX-PNETs developed resistance to everolimus. However, sapanisertib, a more potent inhibitor of the mTOR pathway, caused tumor shrinkage in most everolimus-resistant tumors. Our PDX-PNET model is the first available, validated PDX model for PNET, and preclinical data from the use of this model suggest that sapanisertib may be an effective new treatment option for patients with PNET or everolimus-resistant PNET.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279485PMC
http://dx.doi.org/10.1158/1535-7163.MCT-17-1204DOI Listing

Publication Analysis

Top Keywords

patient-derived xenograft
8
xenograft model
8
pancreatic neuroendocrine
8
neuroendocrine tumors
8
everolimus-resistant tumors
8
model pnet
8
mtor pathway
8
everolimus sapanisertib
8
pnet
7
model
5

Similar Publications

Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.

Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. Here, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA.

View Article and Find Full Text PDF

The high morbidity and mortality of colorectal cancer (CRC) is a major challenge in clinical practice. Although a series of alternative research models of CRC have been developed, appropriate orthotopic animal models that reproduce the specific clinical response as well as pathophysiological immune features of CRC are still lacking. In the current study, we constructed a CRC orthotopic xenograft model by implanting the tumor tubes at the colorectum of mice and monitored the model development using bioluminescence imaging.

View Article and Find Full Text PDF

Gastrointestinal stromal tumors (GIST) are the most common mesenchymal malignancy of the gastrointestinal tract. Most GIST harbor mutations in oncogenes, such as KIT, and are treated with tyrosine kinase inhibitors (TKI), such as imatinib. Most tumors develop secondary mutations inducing drug resistance against the available TKI, which requires novel therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!